

Triple Play Service Performance Test System

System to provide an Integrated Multiplay Test System (IMTS) to evaluate the Performance and Quality of Voice, High Speed Internet and IPTV services delivered over converged IP/Ethernet infrastructures and GPON access networks.

ALBEDO TELECOM is pleased to provide this information in response to ETISALAT request for proposal and quotation (RFP) for managing its Triple Play network.

Presentation

This proposal for System to provide an integrated test solution to evaluate the performance of Voice, High Speed Internet and IPTV services is presented by TEKSIGNALS and ALBEDO Telecom and the support of Malden, IXIA and Rohde&Schwarz.

- ALBEDO Telecom: Manufacturer with 30 years experience in telecommunications, test, measurement and monitoring, ALBEDO has clients in more than 25 countries. Many solutions have been pioneered by this company as the we designed the first PDH tester in the world, or the first handheld testers for SDH, ATM, and MPEG / TS2. Today ALBEDO designs test equipment and systems while consulting / integration services for VoIP and IPTV and unified networking.
- Teksignals sets standards as a professional consultancy in the fields of Broadcasting, Telecommunications, Test & Measurements, Multimedia, Education, Instrumentation and Professional Systems. Teksignals is truly an innovator and leader in the integration of performance and different technologies. The expertise gained have given the firm a strong local and international client base and a "can do well" reputation. Teksignals believes their industry has no boundaries and they are continually striving to develop and implement new and unprecedented practical design solutions.
- IXIA: Manufactures highly scalable solutions generate, capture, characterize, and emulate network and application traffic, establishing definitive performance and conformance metrics of network devices or systems under test. Ixia's Triple Play test systems address the growing need to test voice, video, and data services and network capability under real-world conditions. Ixia's test systems utilize a wide range of industry-standard interfaces, including Ethernet, SONET, ATM, and wireless connectivity.
- ROHDE & SCHWARZ. Rohde & Schwarz is the largest manufacturer of electronic test and measurement equipment in Europe. Our T&M instruments and systems are setting standards worldwide in research, development, production and service. We are the key partner of industry and network operators for all measurement tasks in the field of analog and digital communications.
- MALDEN. Malden delivers reference speech quality measurement systems to the telecommunications community. With carefully designed interfaces to VoIP, mobile, satellite and wireline networks, our products are used to define and confirm performance standards all over the world. Malden products are used for product evaluation, benchmarking, SLA verification, IP equipment developers and regression testing.

All rights reserved. No part of this document may be stored, copied or transmitted, by any means, without the permission in written of the Legal Owner

< -

⊢ z

ш

_ __

z

0 0

Introduction

This document describes the major uses and features of ALBEDO's Triple Play Service Performance Test System which is built integrating network elements and solutions from IXIA, MALDEN, R&S, TECNALIA and ALBEDO. Our goal is to provide ETISALAT with the right solution to test, monitor and troubleshoot their voice, video and data applications that will improve ATISALAT Triple Play service fulfillment, service quality, service assurance and service optimization.

The Integrated Multiplay Test System

This Multiplay Test System is an integral solution to evaluate the performance of Voice, High Speed Internet, and IPTV services in actual Network Conditions. It is also capable of testing the IP Converged and Transport network, while verifying the FTTH access network. This System it is also capable to Emulate Triple Play services through generation and analyzing the services on GPON, CPE routers, PLC, Coax, and STB.

ALBEDO Overview

ALBEDO is a company based in Barcelona, Spain (European Union). Our two main businesses are: (1)manufacturer of Telecom Test and Diagnostics instruments and systems for telcos and OEMs; and (2) as consultant and integrator for VoIP and IPTV monitoring services delivered over unified networking and new generation access technologies.

At the Consulting and Integration business, we design test & monitoring solutions for a highly quality, resilient IPTV, VoD, VoIP, HSI architectures. We use probes, servers and testers capable that are of emulate IPTV servers and software for compression and Video on Demand (VOD) and Streaming Video content. We can replicate accurately the actual VoIP scenarios to execute approval and acceptance procedures in optimal conditions, while verifying the quality of the phone service.

Our triple play (voice, video and data) converged network test solutions focus on Standard and High Quality services deployed over multi-vendor IP networks using state-of-the-art hardware and software to IP technologies. The IP stream can be unicast or multicast onto the network backbones maintaining Quality of Service (QoS). The result is to achieve excellence Quality of Experience (QoE) keeping in Triple Play services jitter free, low loss and minimal latency end-to-end.

We look forward to work with ETISALAT to provide a best in class solution to verify and assure the quality for your converged infrastructure and Multiplay services.

Síncerely,

Jose M Caballero General Manager ALBEDO Telecom jose.caballero@albedo.biz +34 637 410 299

Table of Contents

1	Introduction	.4
_	1.1 Highlighted Features	. 4
	1.2 Options 1.2.1 Acceptance and Conformance Test Suite	. 5 . 5
2	Architecture	7
2	2.0.1 OPTIONAL	
3	Simulation ETISALAT network and Subscriber	٩
5	3.1 PPPoX	. 9
	3.2 DHCP 3.3 DNS	
-		
4	Traffic Generation/Analysis 4.1 P2P traffic (OPTIONAL)	
	4.2 HTTP / HTTPS Navigation	. 21
	4.3 IP Telephony 4.4 Unicast and Multicast Video	. 23 . 28
5	VoIP Traffic Generation and Analysis Subsystem	27
5	5.1 Digital Speech Level Analysis	. 38
	5.1.1 Traffic Sniffers 5.2 SIPp Scripts	. 39
	5.3 Remote Access	
6	Performance Testing Layer 2 / Layer 3	41
Ū	6.1 Other Services and Protocols	. 46
7	IP Network impairments Generation	.47
	7.1 Network Impairments Generation	. 47
	 7.2 Simulation of actual networks conditions 7.3 Conformity procedures 	. 48
	7.3.1 QoS requirements 7.3.2 Net Storm	. 48
	7.3.2 Net.Storm	
8	Testing at the GPON Access Network	50
U	8.1 Real time user traffic extraction	. 50
	 8.2 Service regeneration and QoS Evaluation 8.3 Problems in PON and GPON networks 	. 51
	8.4 Transparent analysis and Capture	51
	8.5 Network analysis and evaluation	
9	Physical Media disturbances (OPTIONAL)	53
5	9.1 Test Requirements	. 53
	9.1.1 Automatic control 9.2 Testing of PLC system	. 54
	9.3 WiFi Testing Systems	. 54
	9.4 Tests for Coaxial transmission systems	
10	Control, Management and Automation (OPTIONAL)	.56
An	x. A Supplier Statement of Compliance	. 57
	10.1 GPON Analyzer.	. 57
	10.2 Voice Services	
	10.4 HSI Service	
	10.5 Backbone testing	
An	x. B ALBEDO Telecom SIP/VoIP Test Suite (OPTIONAL)	. 62
Anx. C Training, Support and Maintenance		
A	x. D. Readme	67

ONFIDENTIAL

C

1. INTRODUCTION

This document describes an Integrated Test System consisting of generators of traffic, measurement probes, standard network elements, a network impairments generators at IP layer and at physical level. The system also includes a GPON analyzer option to measure also in the FTTH access network.

This system is test solution capable of generating Voice, Video, TV, P2P, Data traffic in the same way as ETISALAT contribution network and customer applications. There is the possibility of adding perturbations in different ways from traffic generators to control the IP network impairments such as delay, jitter, loss, etc. to characterize and test any Service Under Test (SUT) such as Voice/TV/Video/ Data, in actual network conditions.

The system allow the verification of network elements and their compliance capabilities with the Multiplay system of ETISALAT. Some are: IP phones, STB, IPTV, PC and components for interconnection (wireless, coax, PLCs).

One important point to highlight is that all elements could be automated to become part of test plans that can be managed in a simple and centralised way.

ALBEDO Integrated Multimedia Test System (IMTS)

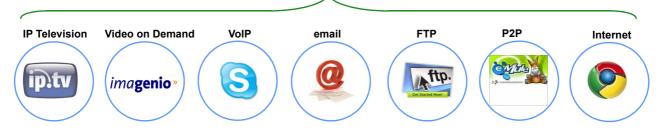
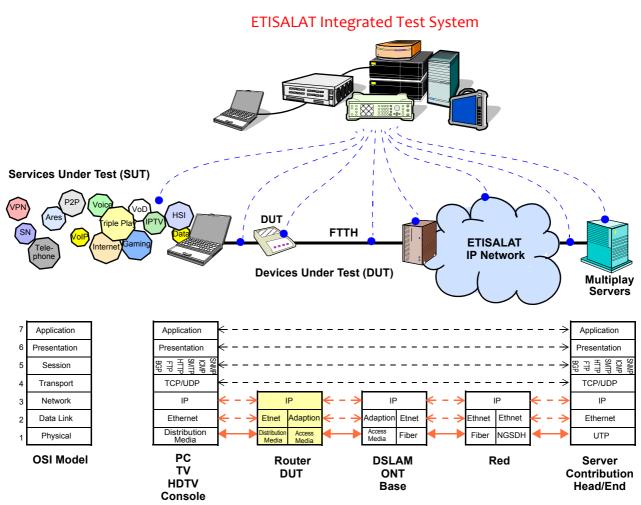


Figure 1. Multiplay services that can be fully verified in the ALBEDO Multiplay Test System.

Highlighted Features


This Multiplay Test System includes a series of facilities, equipment and optional services to provide an optimal solution, scalable and effective safeguards need to evolve with complete ability to create new tests and trials expected in future.

- Standard and scalable architecture, integration of new connectivity features, new services (ie VoIP), new test suite, new access networks.
- Testing places scalable from 4 to 16 ports. The proposed frame can have two cards.
- QoE metrics in audio and video applications, including MDI, MOS MOS audio and video. In addition, generic compute QoS metrics (delay, jitter, packet loss).
- Support RFC 2544, RFC 2889, RFC 3511 and RFC 3918 standard test devices with standard tests for Ethernet / IP, IP Multicast tests and specific tests for NAT routers and firewalls.
- Net.Storm is a simple, fast, hardware based Ethernet/IP network emulator that provides the ability to generate common network effects such as packet loss, duplication, delay, congestion, packet errors and bandwidth limitations. It is designed to offer sufficient capabilities and performance to reproduce a wide range of network behaviors up to 1 Gbps rates with accuracy always better that 1 ms.

ALBEDO Telecom - B6523022 - Ramón Turró, 100 - Barcelona - 08005 - www.telecom.albedo.biz

CONFIDENTIA

Figure 2. The model of seven levels of telecommunications allows the router, not have to analyse the payload of the IP frames, or what is the same, never engages with the upper levels of protocols or applications.

Options

This system has several alternatives to be extended:

- Application Replay. This is an application that can play back previously captured traffic, stored in a format widely accepted by industry (PCAP). This application transforms the Integrated Test System in an Open Solution capable to support virtually any application used by the subscriber.
- Simulation of disturbances in the network subscriber. Including those that occur in elements such as wireless (Wi/Fi), Coax and Powerline (PLC). For each of the modalities of interconnection network subscriber ALBEDO may also offer predefined test suites (also known as test plans).

Acceptance and Conformance Test Suite

The second family of options is a range of test suites developed by ALBEDO Telecom intended for the Acceptance and Approval of equipment for IPTV or VoIP such as routers, STB and other terminals, that could be implemented systematically in the test:

Test suite for video coaxial transmitters

6 / 68

FIDENTIAL

z

0 0

- Test Suite for the approval of PLC equipment (see Annex B)
- Test Suite for the selection of video transmitters (see Annex B)
- Suite of tests to ensure quality of VoIP equipment (see Annex B)
- Compliance test suite VoIP equipment (see Annex C)
- · Suite of tests to ensure quality of network equipment and terminals IPTV
- Verification test suite IP, DNS, Server error (see Appendix C)

2. ARCHITECTURE

The Integrated Test System is made up of several subsystems. Each has specific functions:

- Generator / Analyzer: This part of the Test System performs two distinct functions. On
 one side is responsible for emulating the user traffic in the most realistic way and the
 other acts as a probe for evaluating traffic after passing through the Service under
 Test (SUT) or the Device under Test (DUT). The core of this subsystem is the application of Ixia IxLoad.
- Subsystem I Network Services Simulation: It will provide the connectivity, switching and emulation services that usually provide IP networks, specifically those provided by the ETISALAT network, including authentication, IP address allocation and domain name service. Some of the protocols from the application itself will emulate IxLoad (DHCP server, DNS server) and others such as access via PPPoE be made by a dedicated server.

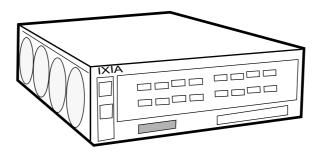


Figure 3. XM2 chassis is the platform which is built platform subsystems test generation and simulation of networks. It is scalable up to 32 ports.

OPTIONAL: The network subsystem can take care to generate impairments that may
occur in the operator's network and affect the quality of services. Disturbances such
as delays (constant or variable according to a given distribution probability), duplication of packets, packet loss and reordering of packets

OPTIONAL

 Subsystem II - Subscriber Network Simulation: The most important part of this subsystem is the physical simulation which is used to interconnect the communication equipment of the subscriber network. In the simplest case, the interconnection is done via Ethernet interfaces but there are other possibilities that require more extensive testing. For example WiFi, PLC or interconnection via coaxial cable. Some network services commonly available in the networks of subscribers (eg. DHCP server).

O

NTIAL

ш

ΕID

z

0 0

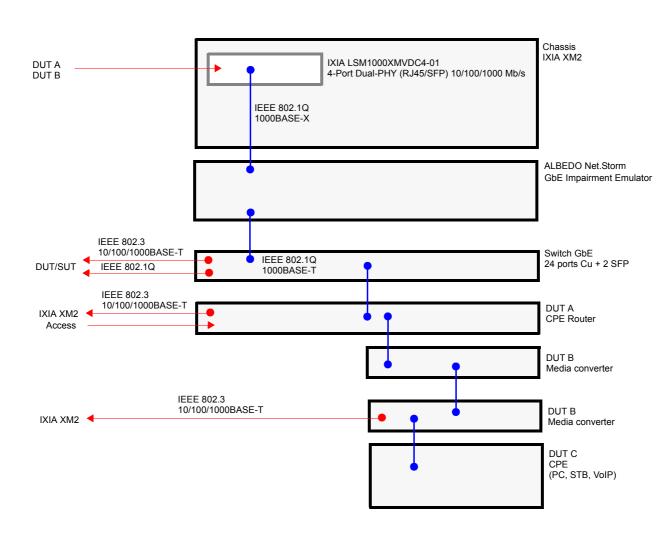


Figure 4. Block diagram of some elements of the Integrated Multimedia Test System (IMTS).

TIAL

z

ш О

_

ш

z

0

O

3. SIMULATION ETISALAT NETWORK AND SUBSCRIBER

The Integrated System Test verifies network and the Multiplay services such as IPTV or VoIP particularly in the case of a failure or bad quality is not determined the cause if it is on the network or device that is being evaluated. The System is a known and 100% controlled environment. The simulation of ETISALAT network and the subscriber, involves the generation of traffic, often a client / server, which is not in itself proof traffic but at the same time it is essential to ensure that evidence can function correctly. For example, it is necessary to allow the Implemented network to authenticate users and provide IP addresses because otherwise never get to test traffic transmitted.

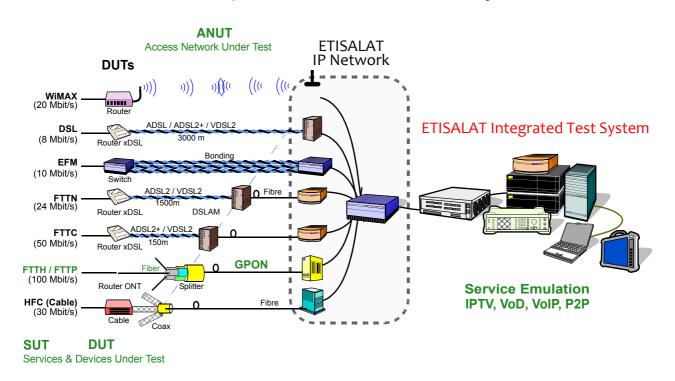


Figure 5. It is also possible to Implement ETISALT network in order to verify the quality of the services and access network

ΡΡΡοΧ

The base configuration of the Integrated Test System offers the ability to authenticate the subscriber routers and assign IP addresses on the network using PPPoE.

It also offers advanced testing protocols for access to PPPoE and PPPoA to characterize in detail the behavior of the DUT / SUT. Once established the session, the Integrated Test System allows the injection of user traffic on them and measure quality parameters. Proficiency testing are supported, latency associated with DUT / SUT.

The optional item described also includes the ability to Implement the L2TPv2 protocol (RFC 2661) and L2TPv3 (RFC 3931).

PPP	Full PPP stack
	Support for PPPoE, PPPoA and PPPoEoA
	IPv4 and IPv6 sessions
	DHCP support
	VLAN and stacked VLAN (QinQ) support
	ATM: LLC and VC Multiplexed encapsulation over AAL5
	Full session control (setup and teardown rates, total session count, flapping, retry attempts, multi- ple sessions per VLAN or ATM VPI/VCI)
	 LCP link control, IPCP network control and NCP address control
	Access Concentrator selection
	Authentication: PAP and CHAP (MD5) with unique user names and passwords
	Keep-alive responses and requests
	 Domain groups used to direct access to network port traffic
Traffic Generation	Stateless and stateful traffic generation over established sessions/tunnels
	Stateless Layer 4 traffic flows with configurable protocol (TCP, UDP) and variable source/destina- tion port numbers
	Full QoS control per traffic stream using DSCP, IP Precedence or IPv6 Traffic Class/Flow labels
	Full bi-directional source to destination traffic flow, with variable data rates
	Fixed, incrementing, or mixed frame sizes
	 IMIX mode allowing individual rates assigned to up to 5 different frame sizes
	 Frame rate control in frames per second or percentage of line rate
	 IEEE 802.1q VLANs and stacked VLANs (QinQ) - full range of 4,095 IDs
Relevant Standards	• RFC 1332 (IPCP)
	• RFC 1334 (PAP)
	RFC 1570 (LCP Extensions)
	• RFC 1661 (PPP)
	• RFC 1994 (CHAP)
	RFC 2364 (PPP over AAL5)
	• RFC 2516 (PPPoE)
	• RFC 2661 (L2TP)
	• IEEE 802.1q (VLANs)

Table 11. Technical specifications of the PPP simulator sessions.

DHCP

The Integrated Test System allows the emulation of a DHCP server (item 925-3148). The server is a fully integrated with the test system so that it can be managed together and allows the extraction of detailed statistics.

Through this server, DHCP clients can connect directly to the Test System for those tests where needed. Examples could include performance testing of STBs for IPTV or, IP phones without the need of the subscriber router. The DHCP server will also be useful in case ETISALAT wants to verify the operation of DHCP protocol access in place of PPP. In the latter case, the DHCP client would be the subscriber router.

On the other hand it is also possible to Implement one or more DHCP clients (Item 925-3300) and send traffic once established test sessions. This is needed to Implement the user traffic in the user's network via a subscriber router.

DNS

The Integrated System Test Implements DNS traffic generated by both clients and servers (Item 925-3300). Thus, all tests can be performed with maximum likelihood because the domain names resolved to IP addresses and statistics (especially latency) include delays resulting from DNS requests and responses.

T I A z ш _ _ z 0 O

Features	• IPv4, IPv6
	Multiple servers per port
	Configuration of starting pool address and number of IPs per pool and scope mask
	 Per-scope configuration of gateway/router and DNS server
	Configurable timers for lease
	Server IP and MAC address
	VLAN and QnQ support per server
	First pool IP and pool count
	Default lease time (s)
	Maximum lease time (s)
Relevant Standards	• RFC 2131 (DHCP)

Table 12. DHCP server simulator specifications.

Table 13.DHCP client simulator specifications.

Commands	 DHCP DISCOVER, REQUEST, DECLINE, REJECT and INFORM
Options	• Pad (0)
	Subnet Mask Value (1)
	Time Offset in Seconds from UTC (2)
	Router addresses (3)
	DNS Server addresses (6)
	Hostname string (12)
	DNS domain name of the Client (15)
	Interface MTU Size (26)
	All Subnets are Local (27)
	Broadcast Address (28)
	Perform Mask Discovery (29)
	Perform Router Discovery (31)
	ARP Cache Timeout (35)
	Vendor Specific Information (43)
	Requested IP Address (50)
	IP Address Lease Time (51)
	Overload "sname" or "file" (52)
	DHCP Message Type (53)
	DHCP Server Identification (54)
	Parameter Request List (55)
	DHCP Error Message (56)
	DHCP Maximum Message Size (57)
	DHCP Renewal (T1) Time (58)
	DHCP Rebinding (T2) Time (59)
	(Vendor) Class Identifier (60)
	Client Identifier (61)
	User Class Information (77)
	DHCP Relay Agent (82)
	• End (255)
eatures	Support for BOOTP
	Ability to configure option 82 relay agent emulation with sub-options circuit-id and remote-id
	Ability to emulate trusted network element in networks containing DHCP relay agents
	Support to configure DHCP options (mandatory and informational)

C

11 / 68

12 / 68

ONFIDENTIAL

C

	Table 13. DHCP client simulator specifications.		
Collected Statistics	 DHCP client simulator specifications. DHCP DHCPDISCOVER Response Time DHCP DHCPREQUEST Response Time DHCP DHCPREQUEST (SELECTING) Response Time DHCP DHCPREQUEST (INIT-REBOOT) Response Time DHCP DHCPREQUEST (RENEWING) Response Time DHCP DHCPREQUEST (REBINDING) Response Time DHCP DHCPINFORM Response Time DHCP DHCPINFORM Response Time DHCP DHCP Total Commands Sent DHCP Total Commands Failed DHCP Total Commands Failed (NAK Received) 		
	 DHCP Total Commands Failed (Timeout) DHCP Total Commands Failed (Error) DHCP Total Commands Retransmitted DHCP Total Responses Matched DHCP Total Responses Mismatched 		

13 / 68

Table 13. DHCP client simulator specifications.
DHCP DHCPDISCOVER Commands Sent DHCP DHCPDISCOVER Commands Succeeded
DHCP DHCPDISCOVER Commands Failed
DHCP DHCPDISCOVER Commands Failed (Timeout)
DHCP DHCPDISCOVER Commands Failed (Error)
DHCP DHCPDISCOVER Commands Retransmitted
DHCP DHCPDISCOVER Responses Matched DHCP DHCPDISCOVER Responses Mismatched
 DHCP DHCPDISCOVER Responses Mismatched DHCP DHCPREQUEST Commands Sent
DHCP DHCPREQUEST Commands Succeeded
DHCP DHCPREQUEST Commands Failed
DHCP DHCPREQUEST Commands Failed (NAK Received)
DHCP DHCPREQUEST Commands Failed (Timeout)
DHCP DHCPREQUEST Commands Failed (Error)
DHCP DHCPREQUEST Commands Retransmitted
DHCP DHCPREQUEST Responses Matched
DHCP DHCPREQUEST Responses Mismatched
DHCP DHCPREQUEST (SELECTING) Commands Sent
DHCP DHCPREQUEST (SELECTING) Commands Succeeded
 DHCP DHCPREQUEST (SELECTING) Commands Failed
 DHCP DHCPREQUEST (SELECTING) Commands Failed (NAK Received)
 DHCP DHCPREQUEST (SELECTING) Commands Failed (Timeout)
 DHCP DHCPREQUEST (SELECTING) Commands Failed (Error)
 DHCP DHCPREQUEST (SELECTING) Commands Retransmitted
 DHCP DHCPREQUEST (SELECTING) Responses Matched
 DHCP DHCPREQUEST (SELECTING) Responses Mismatched
 DHCP DHCPREQUEST (INIT-REBOOT) Commands Sent
 DHCP DHCPREQUEST (INIT-REBOOT) Commands Succeeded
DHCP DHCPREQUEST (INIT-REBOOT) Commands Failed
DHCP DHCPREQUEST (INIT-REBOOT) Commands Failed (NAK Received)
DHCP DHCPREQUEST (INIT-REBOOT) Commands Failed (Timeout)
DHCP DHCPREQUEST (INIT-REBOOT) Commands Failed (Error)
DHCP DHCPREQUEST (INIT-REBOOT) Commands Retransmitted
DHCP DHCPREQUEST (INIT-REBOOT) Responses Matched
DHCP DHCPREQUEST (INIT-REBOOT) Responses Mismatched
DHCP DHCPREQUEST (RENEWING) Commands Sent
 DHCP DHCPREQUEST (RENEWING) Commands Succeeded DHCP DHCPREQUEST (RENEWING) Commands Failed
 DHCP DHCPREQUEST (RENEWING) Commands Failed DHCP DHCPREQUEST (RENEWING) Commands Failed (NAK Received)
 DHCP DHCPREQUEST (RENEWING) Commands Failed (Timeout)
DHCP DHCPREQUEST (RENEWING) Commands Failed (Error)
DHCP DHCPREQUEST (RENEWING) Commands Failed (End)
DHCP DHCPREQUEST (RENEWING) Responses Matched
DHCP DHCPREQUEST (RENEWING) Responses Mismatched
DHCP DHCPREQUEST (REBINDING) Commands Sent
DHCP DHCPREQUEST (REBINDING) Commands Succeeded
DHCP DHCPREQUEST (REBINDING) Commands Failed
DHCP DHCPREQUEST (REBINDING) Commands Failed (NAK Received)
DHCP DHCPREQUEST (REBINDING) Commands Failed (Timeout)
DHCP DHCPREQUEST (REBINDING) Commands Failed (Error)
DHCP DHCPREQUEST (REBINDING) Commands Retransmitted
DHCP DHCPREQUEST (REBINDING) Responses Matched
DHCP DHCPREQUEST (REBINDING) Responses Mismatched
DHCP DHCPDECLINE Commands Sent
DHCP DHCPDECLINE Commands Send Failed
DHCP DHCPRELEASE Commands Sent

DHCP DHCPRELEASE Commands Sent • DHCP DHCPRELEASE Commands Send Failed

Table 13.

14 / 68

	DHCP client simulator specifications.
	DHCP DHCPINFORM Commands Sent
	DHCP DHCPINFORM Commands Succeeded
	DHCP DHCPINFORM Commands Failed
	DHCP DHCPINFORM Commands Failed (Timeout)
	DHCP DHCPINFORM Commands Failed (Error)
	DHCP DHCPINFORM Commands Retransmitted
	DHCP DHCPINFORM Responses Matched
	DHCP DHCPINFORM Responses Mismatched
	DHCP BOOTREQUEST Commands Sent
	DHCP BOOTREQUEST Commands Succeeded
	DHCP BOOTREQUEST Commands Failed
	DHCP BOOTREQUEST Commands Failed (Timeout)
	DHCP BOOTREQUEST Commands Failed (Error)
	DHCP BOOTREQUEST Commands Retransmitted
	DHCP BOOTREQUEST Responses Matched
	DHCP BOOTREQUEST Responses Mismatched
	DHCP Total Number of DHCPOFFER Messages
	DHCP Number of DHCPOFFER Messages Ignored
	DHCP Total Number of DHCPACK Messages
	DHCP Number of DHCPACK Messages Ignored
	DHCP Total Number of DHCPNAK Messages
	DHCP Number of DHCPNAK Messages Ignored
	DHCP ICMP Echo Messages Received
	DHCP ICMP Echo Reply Messages Sent
	DHCP ARP Request Messages Received
	DHCP ARP Reply Messages Sent
	DHCP Valid IP Addresses Received
	DHCP Duplicate IP Addresses Received
	DHCP User Count
	DHCP Total Transaction
	DHCP Number of Active Leases
	DHCP Number of Leases Expired
	DHCP Number of Clients Awaiting IP Address from Server
	DHCP Total Bytes Transmitted
	DHCP Total Bytes Received
	DHCP Total Bytes Transmitted and Received
Relevant Standards	RFC 2131 Dynamic Host Configuration Protocol
	RFC 3046 DHCP Relay Agent Information Option

In the transactions associated with the DNS protocol are collected and stored statistics associated with the operation of the protocol in DUT / SUT. As in the other services Implemented in the Integrated Test System, the server / client DNS is fully integrated and managed in conjunction with other elements and devices

Table 14.DNS technical specification.

Version	• DNSv4
IP Support	• IPv4, IPv6
Emulation	Client and Server
Queries	• A, AAAA, CNAME, SOA, NS, MX, PTR
Features	 UDP and TCP transport Option to use multiple zones and unique/non-unique resource records Ability to import named configurations to DNS serve re

FIDENTIAL

z 0 U

15	5 /	6	8

ONFIDENTIAL

ပ

	DNS technical specification.
Client Statistics	DNS Total Queries Sent
	DNS Total Queries Successful
	DNS Total Queries Retried
	DNS Total Queries Failed
	DNS Total Queries Failed (Format Error)
	DNS Total Queries Failed (Server Failure)
	DNS Total Queries Failed (Name Error)
	DNS Total Queries Failed (Not Implemented)
	DNS Total Queries Failed (Refused)
	DNS Total Queries Failed (Other)
	DNS Total Queries Failed (Timeout)
	DNS Total Queries Failed (Aborted)
	DNS (Type A) Queries Sent
	DNS (Type A) Queries Successful With Match
	DNS (Type A) Queries Successful Without Match
	DNS (Type A) Queries Failed
	DNS (Type CNAME) Queries Sent
	DNS (Type CNAME) Queries Successful With Match
	DNS (Type CNAME) Queries Successful Without Match
	DNS (Type CNAME) Queries Failed
	DNS (Type MX) Queries Sent
	DNS (Type MX) Queries Successful With Match
	DNS (Type MX) Queries Successful Without Match
	DNS (Type MX) Queries Failed
	DNS (Type PTR) Queries Sent
	DNS (Type PTR) Queries Successful With Match
	DNS (Type PTR) Queries Successful Without Match
	DNS (Type PTR) Queries Failed
	DNS (Type NS) Queries Sent
	DNS (Type NS) Queries Successful With Match
	DNS (Type NS) Queries Successful Without Match
	DNS (Type NS) Queries Failed
	DNS (Type SOA) Queries Sent
	DNS (Type SOA) Queries Successful With Match
	DNS (Type SOA) Queries Successful Without Match
	DNS (Type SOA) Queries Failed
	DNS Total Bytes Transmitted
	DNS Total Bytes Received
	DNS Bytes
	DNS Throughput
	DNS Transactions
	DNS Transaction Rate
	DNS Simulated Users
	DNS Total Queries Received
	DNS Total Queries Responded Successfully
	DNS Total Queries Failed
	DNS Total Queries Failed (Format Error)
	 DNS Total Queries Failed (Server Failure)
	DNS Total Queries Failed (Name Error)

 Table 14.

 NS technical specificat

Table 14. DNS technical specification.	
Server Statistics	DNS Total Queries Failed (Not Implemented)
	DNS Total Queries Failed (Refused)
	DNS Total Queries Failed (Other)
	DNS (Type A) Queries Received
	DNS (Type A) Queries Responded Successfully
	DNS (Type A) Queries Failed
	DNS (Type CNAME) Queries Received
	 DNS (Type CNAME) Queries Responded Successfully
	DNS (Type CNAME) Queries Failed
	DNS (Type MX) Queries Received
	DNS (Type MX) Queries Responded Successfully
	DNS (Type MX) Queries Failed
	DNS (Type PTR) Queries Received
	 DNS (Type PTR) Queries Responded Successfully
	DNS (Type PTR) Queries Failed
	DNS (Type NS) Queries Received
	 DNS (Type NS) Queries Responded Successfully
	DNS (Type NS) Queries Failed
	DNS (Type SOA) Queries Received
	 DNS (Type SOA) Queries Responded Successfully
	DNS (Type SOA) Queries Failed
	DNS Total Bytes Transmitted
	DNS Total Bytes Received
	DNS Total Bytes Transmitted and Received
Relevant Standards	• RFC 1034
	• RFC 1035
	• RFC 1123
	• RFC 1886

ONFIDENTIAL

C

4. TRAFFIC GENERATION/ANALYSIS

One of the characteristics of the Integrated Test System is the ability to Implement the traffic generated by users and network elements in a way that is as close as possible to the actual situation but in a totally controlled to ensure repeatability of the measurements. On the other hand, as a Test System tool, the Integrated Test System is able to obtain statistics at the reception test traffic and perform various tests and measures that characterize the performance of the DUT / SUT.

The core of both generator and the measuring probe consists of Ixia's IxLoad product. IxLoad software is installed on a single Ixia XM2 chassis. The application module installed on the XM2 is the LSM1000XMVDC4-01 that has four Gigabit Ethernet ports, RJ-45 or SFP. The interface used to schedule generation to meet the IEEE 802.1Q standard, i.e. Ethernet frames with VLAN tags. In this way, you can distribute traffic between different VLANs test and switches in the network subsystem independently.

The union of the generator and analyzer on a single computer offers numerous advantages. These make use of the same time base at both ends of transmission. This feature is important when trying to evaluate metrics to-end delay as specified in RFC 2679 (A One-way Delay Metric for IPPM).

IxLoad is characterized by the potential to generate different types of traffic in a very flexible way. Can be Implemented clients and web servers (HTTP and HTTPS), FTP, P2P (eDonkey, BitTorrent...), telephony and IP video telephony, VoD, IPTV and other applications. To this must be attached to the possibility of combining different types of traffic for complex test scenarios using different encapsulated data.

The performance metrics are specific to each type of traffic but some, such as those associated with latency, are repeated in several types of evidence.

P2P traffic (OPTIONAL)

P2P traffic generation is supported natively by the Integrated Test System (Item 925-3143) for most common protocols. This includes both BitTorrent and eDonkey).

IP Support	• IPv4, IPv6
Protocols	BitTorrent, eDonkey
Emulation	Initiator peer, responder peer or both
Features	 Realistic P2P protocol simulation Extensive library of predefined P2P traffic flows Supports detailed measurement statistics and real-time graphs Scales to thousands of peers, generating 800 Mb/s of P2P traffic per Gigabit Ethernet port Choose from a library of P2P flow definitions for each protocol Each traffic flow defines traffic with a different set of properties, such as the direction (upload, download or bidirectional to download), the amount of data transferred, the data size unit, and other properties.
Objectives	 Number of peers Throughput Concurrent connections Connections per second Transactions per second

	Tal	ble 15			
001	anadificationa	oftha	000	Troffic	Cane

Technical specifications of the P2P Traffic Generator

_
۷
_
⊢
z
ш
Δ
_
ш
z
0
U

 Table 15.

 Technical specifications of the P2P Traffic Generator

Peer Count

Statistics	• Peer Count
	Concurrent Sessions
	Connection Rate
	Transaction Rate
	Initiator Total Bytes Sent Rate
	Initiator Total Bytes Received Rate
	Initiator Total Throughput
	Responder Total Bytes Sent Rate
	Responder Total Bytes Received Rate
	Responder Total Throughput
	Connection Requests Sent
	Connection Requests Successful
	Connection Requests Failed
	Active Connections
	Connection Requests Received
	Connections Accepted
	Connections Failed
	Initiator Total Bytes Sent Initiator Total Bytes Received
	Initiator Total Bytes Sent and Received
	Responder Total Bytes Sent
	Responder Total Bytes Received
	Responder Total Bytes Sent and Received Total Transportions Initiated
	Total Transactions Initiated
	Total Transactions Successful
	Total Active Flow
	Total Flow Initiated
	Total Flow Succeeded
	Total Flow Failed
	Total Flow Failed Error
	Total Flow Failed Timeout
	Total Flow Failed Mismatch
	Control Flow Transmission Initiated
	Control Flow Transmission Succeeded
	Control Flow Transmission Failed
	Control Flow Transmission Failed (Error)
	Control Flow Transmission Failed (Timeout)
	Control Flow Reception Initiated
	Control Flow Reception Succeeded
	Control Flow Reception Failed
	Control Flow Reception Failed (Error)
	Control Flow Reception Failed (Timeout)
	Control Flow Reception Failed (Mismatch)
	Data Flow Transmission Initiated
	Data Flow Transmission Succeeded
	Data Flow Transmission Failed
	Data Flow Transmission Failed (Error)
	Data Flow Reception Initiated
	Data Flow Reception Initiated Data Flow Reception Succeeded
	Data Flow Reception Succeeded Data Flow Reception Failed
	Data Flow Reception Failed (Error Data)
	Flow Reception Failed (Timeout)

Statistics

NTIAL

ш

ΕID

z

0 0

Constantly are appearing new applications based on P2P techniques, these applications are not based on any standard. Therefore, P2P applications are always difficult to test. The solution is to use Application Replay (item 925-3142). This is a feature of the Integrated Test System that allows playback of a stream of IP data previously captured.

To recreate the previously captured session is not enough to reproduce the data stored mechanically. Replay Application has been designed to play both ends of the communication if necessary and take into account the rules of TCP / IP during playback. Thus, the Integrated Test System can be extended to support new protocols not provided in principle. This method is especially efficient then those protocols not covered by any standards can be easily recreated with maximum likelihood.

IP Support	• IPv4
Emulation	Peers - initiator, responder or both
Features	 Create bi-directional traffic simultaneously Industry's only solution that replicates user-specified traffic at varying levels of performance. Emulates application traffic alongside other IxLoad-emulated traffic (HTTP, VoIP, IPTV,) Supports detailed measurement statistics and real-time graphs. Supports conditional statistics (per-IP, per-VLAN, per-User), per-flow statistics, and latency statistics support Override responder port derived from the capture during replay Select point in PCAP file to be begin playback from Concigure filters for initiator and responder IP and ports Concurrent flow support to simulate users initiating more than one flow at one time Validate Per-flow and Latency statistics with the advanced statistics option Verify content of payload against expected payload Verify length of payload against expected length
Objectives	 Peer count Throughput Concurrent connections Connection rate Transaction rate
Global statistics	 AppReplay Application Peer Count AppReplay Connection Rate AppReplay Concurrent Sessions AppReplay Transaction Rate AppReplay Initiator Total Bytes Sent/sec AppReplay Application Initiator Total Bytes Received/sec AppReplay Initiator Total Throughput AppReplay Responder Total Bytes Received/sec AppReplay Responder Total Bytes Received/sec AppReplay Responder Total Throughput AppReplay Responder Total Throughput

Tab	le ´	16.
 0	: : : :	

Application Replay Specifications (OPTIONAL).

20 / 68

	Table 16. Application Replay Specifications (OPTIONAL).
	AppReplay Connection Requests Sent
	AppReplay Connection Requests Successful
	AppReplay Connection Requests Failed
	AppReplay Connection Requests Received
	AppReplay Connections Accepted
	AppReplay Connections Failed
	AppReplay Active Connections
	AppReplay Total Transactions Initiated
	AppReplay Total Transactions Successful
	AppReplay Total Flow Replays Initiated
	AppReplay Total Active Flow Replays
	AppReplay Total Flow Replays Succeeded
	AppReplay Total Flow Replays Failed
	AppReplay Total Flow Replays Failed Error
	AppReplay Total Flow Replays Failed Timeout
	AppReplay Total Flow Replays Failed Mismatch
	AppReplay Initiator Total Bytes Sent
	AppReplay Initiator Total Bytes Received
	AppReplay Initiator Total Bytes Sent and Received
	AppReplay Responder Total Bytes Sent
	AppReplay Responder Total Bytes Received
	AppReplay Responder Total Bytes Sent and Received
	AppReplay Segment Transmission Initiated
	AppReplay Segment Transmission Succeeded
	AppReplay Segment Transmission Failed
	AppReplay Segment Transmission Failed (Error)
	AppReplay Segment Transmission Failed (Timeout)
	AppReplay Segment Reception Initiated
	AppReplay Segment Reception Succeeded
	AppReplay Segment Reception Failed
	AppReplay Segment Reception Failed (Error)
	AppReplay Segment Reception Failed (Timeout)
	AppReplay Segment Reception Failed (Mismatch)
Per flow statistics	Connection Requests Successful
	Active Connections
	Total Transactions Successful
	Initiator Total Bytes Tx
	Initiator Total Bytes Rx
	Initiator Total Bytes Tx and Rx
	Responder Total Bytes Tx
	Responder Total Bytes Rx
	Responder Total Bytes Tx and Rx
	Connection Requests Sent
	Connection Requests Failed
	Connection Requests Received
	Connections Accepted
	Connections Failed
	Total Transactions Initiated
	Total Flow Replays Initiated
	Total Active Flow Replays
	Total Flow Replays Succeeded
	Total Flow Replays Failed
	Total Flow Replays Failed Error
	Total Flow Replays Failed Timeout
	Total Flow Replays Failed Mismatch
	Total Flow Replays Aborted
	Total number of flow replays aborted for any reason.

Table 16.

ONFIDENTIAL

C

CONFIDENTIAL

	Table 16.Application Replay Specifications (OPTIONAL).
	Control Flow Transmission Initiated
	Control Flow Transmission Succeeded
	Control Flow Transmission Failed
	Control Flow Transmission Failed Error
	Control Flow Transmission Failed Timeout
	Control Flow Reception Initiated
	Control Flow Reception Succeeded
	Control Flow Reception Failed
	Control Flow Reception Failed Error
	Control Flow Reception Failed Timeout
	Control Flow Reception Failed Mismatch
	 Inter Segment First Response Latency (for Initiated Flows)
	 Inter Segment First Response Latency (for Responded Flows)
	 Inter Segment Last Response Latency (for Initiated Flows)
.	 Inter Segment Last Response Latency (for Responded Flows)
	Session Life Time (for Initiated Flows)
	Session Life Time (for Responded Flows)

HTTP / HTTPS Navigation

Another characteristic of the Integrated Test System is the ability to Implement one or more transactions HTTP / HTTPS implementing the activity of web users. Both the server and the client can be tested, nevertheless in cases when ETISALAT wants to use an external HTTP server only customers could be tested. It would be possible to even measure the performance parameters such as server response time.

The ability to customize both, client requests and responses of users, is virtually unlimited. It supports HTTP cookies and redirection can be loaded pages and user defined on the server Implemented.

Version	• HTTP 1.0, HTTP 1.1
IP Support	• IPv4, IPv6
Emulation	Client and Server
Features	Supports HTTP pipelining, cookies and HTTP redirection
	Supports proxy server commands
	Supports decompression on HTTP clients
	Supports Content-MD5 integrity check
	Supports Chunked Encoding processing on HTTP clients
	Option to use multiple TCP connections per user
	User realism with control of HTTP commands using transaction aborts and Think times
	User defined pages on HTTP server
	Supports sequence generators that easily create large numbers of user sessions with unique cre- dentials
	Configurable TOS and DSCP bit settings
	Configurable HTTP headers for each request
	 Inspection of data payloads for user-specified text
	Option for HTTP servers to listen on multiple TCP ports
	User-configurable HTTP server page responses
	Support for customizing response code, page size, cookies and page content on servers
	Detailed metrics such as average server response times and total transaction times in addition to HTTP state level and HTTP response code statistics
	Per-URL statistics

Table 17.Web navigation specifications.

Commands	GET, POST, HEAD, PUT and DELETE
Web browsers	Microsoft Internet Explorer 5/6, Mozilla, Firefox, Safari and Custom
Client Statistics	HTTP Simulated Users
	HTTP Concurrent Connections
	HTTP Connections
	HTTP Transactions
	HTTP Bytes
	HTTP Requests Sent
	HTTP Requests Successful
	HTTP Requests Failed
	HTTP Requests Failed (Write)
	HTTP Requests Failed (Read)
	HTTP Requests Failed (Bad Header)
	HTTP Requests Failed (4xx)
	HTTP Requests Failed (400)
	HTTP Requests Failed (401)
	HTTP Requests Failed (403)
	HTTP Requests Failed (404)
	HTTP Requests Failed (408)
	HTTP Requests Failed (4xx other)
	HTTP Requests Failed (5xx)
	HTTP Requests Failed (505)
	HTTP Requests Failed (5xx other)
	HTTP Requests Failed (Timeout)
	HTTP Requests Failed (Aborted)
	HTTP Aborted Before Request
	HTTP Aborted After Request
	HTTP Session Timeouts (408)
	HTTP Sessions Rejected (503)
	HTTP Transactions Active
	HTTP Users Active
	HTTP Bytes Sent
	HTTP Bytes Received
	HTTP Cookies Received
	HTTP Cookies Sent
	HTTP Cookies Rejected
	HTTP Cookies Rejected - (Path Match Failed)
	HTTP Cookies Rejected - (Path Domain Failed)
	HTTP Cookies Rejected - (Cookiejar Overflow)
	HTTP Cookies Rejected - (Probabilistic Reject)
	HTTP Connect Time (ms)
	HTTP Time to First Byte
	HTTP Time to Last Byte
	HTTP Responses Received With Match
	HTTP Responses Received Without Match
	Content-Encoded Response Received
	Content-Encoded Responses Decode Successful
	Content-Encoded Responses Decode Failed
	Unrecognized Content-Encoding Received
	Per-URL Average Compression Ratio
	Deflate Content-Encoding Received
	Deflate Content-Encoding Decode Successful
	Deflate Content-Encoding Decode Failed
	Deflate Content-Encoding Decode Failed Checking Error
	Deflate Content-Encoding Decode Failed Data Error
	Deflate Content Encoding Decode Foiled Decoding Error

Table 17.Web navigation specifications.

ALBEDO Telecom - B6523022 - Ramón Turró, 100 - Barcelona - 08005 - www.telecom.albedo.biz

Deflate Content-Encoding Decode Failed Decoding Error

22 / 68

NTIA

ш ΕID z 0 O

	•	Gzip
	•	Gzip
	•	Ider
	•	Chu
	•	Chu
	•	Chu
	•	Con
	•	Con
	•	Con
	•	Cus
	•	Cus
	•	MD:
Server Statistics	•	HTT
	•	HTT

Table 17. Web navigation specifications.

	Gzip Content-Encoding Received
	Gzip Content-Encoding Decode Successful
	Gzip Content-Encoding Decode Failed
	 Gzip Content-Encoding Decode Failed \u2013 Checking Error
	 Gzip Content-Encoding Decode Failed \u2013 Data Error
	Gzip Content-Encoding Decode Failed \u2013 Decoding Error
	Identity Content-Encodings Received
	Identity Content-Encoding Received
	Identity Content-Encoding Decode Successful
	Identity Content-Encoding Decode Failed
	 Identity Content-Encoding Decode Failed \u2013 Checking Error
	 Identity Content-Encoding Decode Failed \u2013 Data Error
	 Identity Content-Encoding Decode Failed \u2013 Decoding Error
	Chunked Transfer-Encoded Responses Received
	Chunked Transfer-Encoding Decode Successful
	Chunked Transfer-Encoding Decode Failed
	Content-MD5 Response Received
	Content-MD5 Check Successful
	Content-MD5 Check Failed
	Custom-MD5 Response Received
	Custom76. Custom-MD5 Check Failed
	MD5 Check Successful
Server Statistics	HTTP Requests Received
	HTTP Requests Successful
	HTTP Requests Failed
	HTTP Requests Failed (404)
	HTTP Requests Failed (50x)
	HTTP Requests Failed (Write Error)
	HTTP Sessions Rejected (503)
	HTTP Session Timeouts (408)
	HTTP Transactions Active
	HTTP Bytes Received
	HTTP Bytes Sent
	HTTP Cookies Received
	HTTP Cookies Sent
	HTTP Cookies Received with Matching Server ID
	HTTP Cookies Received with Nonmatching Server ID
Relevant Standards	RFC 1945, Hypertext Transfer Protocol - HTTP/1.0
	RFC 2616, Hypertext Transfer Protocol - HTTP/1.1
	RFC 2246, The TLS Protocol Version 1.0
	1

Another feature of the Integrated Test System is the ability to verify the characteristics and performance metrics described there are SSLv2.0 based connections, and TLS v1.0 SSLv3.0 allowing detailed characterization of HTTPS transactions.

The Integrated Test System also supports sophisticated methods of discharges, such as jDownloader. For non-standard option that some were not supported natively by the web traffic simulator could be used as described Replay Application to generate the traffic and check the performance of the DUT.

IP Telephony

The Integrated Test System, in its basic configuration, can also generate IP calls using the most popular signaling protocols such as SIP (item 925-3502).

ALBEDO

F

FIDENTIAL

C 0 0

It supports both audio calls and video calls. The audio / video traffic is encoded using the RTP and reports associated to each call quality are created including performance metrics (packet loss, delay, jitter) and VoIP specific (MOS) (Item 925-3106).

Table 18.
Specifications of the Traffic Simulator, Telephony / SIP based IP Video Telephony.

Features	UDP and TCP Transport
	Support for IP video phone to emulate voice calls with video
	MOS scores reported on a per call basis
	Support for user-defined authentication and registration parameters
	Support for sequence generators to easily create large number of VoIP calls using unique user cre-
	dentials
	Ability to use audio files as payload in a voice session
	Ability to create realistic and complex call flows
	Support for path confirmation using synthetic data or DTMF tones
	Statistics reported on an average and for each call
	Emulate jitter buffers in packets or duration in ms
	Ability to adjust the size of the jitter buffer in real-time
	Customizable SIP header order
	Option to create specific rules to control handling of SIP messages
	Option to configure SIP User Agent Server for Stateless operation
Emulation	SIP User Agent (UA) emulation with signaling and RTP media
Codecs	• G.711, G.729A, G.729B, G.726, G.723.1
Client Statistics	SIP calls initiated
	SIP calls completed
	SIP calls active
	SIP INVITE client transactions initiated
	SIP INVITE client transactions succeeded
	SIP INVITE client transactions failed
	SIP INVITE client transactions failed (TIMER B)
	SIP INVITE client transactions failed (TRANSPORT ERROR)
	SIP INVITE client transactions failed (TRANSACTION TIMEOUT TIMER)
	SIP INVITE client transactions failed (5xx)
	SIP NON-INVITE client transactions initiated
	SIP NON-INVITE client transactions succeeded
	SIP NON-INVITE client transactions failed
	SIP NON-INVITE client transactions failed (TIMER F)
	SIP NON-INVITE client transactions failed (TRANSPORT ERROR)
	SIP INVITE requests sent
	SIP ACK requests sent
	SIP BYE requests sent
	SIP REGISTER requests sent
	SIP INVITE messages retransmitted
	SIP NON-INVITE requests retransmitted
	SIP INVITE requests unexpected
	SIP ACK requests unexpected
	SIP BYE requests unexpected
	SIP CANCEL requests unexpected
	SIP UNKNOWN messages unexpected
	SIP UNKNOWN requests unexpected

Table 1	8.
---------	----

Specifica	tions of the Traffic Simulator, Telephony / SIP based IP Video Telephony.
	SIP 1xx responses expected
	SIP 1xx responses unexpected
	SIP 2xx responses expected
	SIP 2xx responses unexpected
	SIP 3xx responses expected
	SIP 3xx responses unexpected
	SIP 4xx responses expected
	SIP 4xx responses unexpected
	SIP 5xx responses expected
	SIP 5xx responses unexpected
	SIP 6xx responses expected
	SIP 6xx responses unexpected
	RTP Bytes Sent
	RTP Packets Sent
	RTP Tx Jitter (ns)
	RTP Tx Packets Dropped
	RTP Dropped Packets
	RTP Bytes Received
	RTP Packets Received
	RTP Payload Bytes Received
	RTP Bad Packets Received
	RTP Lost Packets Received
	RTP Mis-ordered Packets Received
	RTP Duplicate Packets Received
	RTP Jitter Min
	RTP Jitter Max
	RTP Packets With Jitter Up To 1ms
	RTP Packets With Jitter Up To 3ms
	RTP Packets With Jitter Up To 5ms
	RTP Packets With Jitter Up To 10ms
	RTP Packets With Jitter Up To 20ms
	RTP Packets With Jitter Up To 40ms
	RTP Packets With Jitter More Than 40ms
	RTP DTMFs Detected
	RTP Good DTMF Sequences Detected
	RTP Bad DTMF Sequences Detected
	RTP Packets Dropped By Jitter Buffer
	RTP MOS Average Instant
	RTP MOS Worst Instant
	RTP MOS Best Instant
	RTP MOS Worst
	RTP MOS Best
	RTP MOS Average Per Call
	RTP MOS Worst Per Call
	RTP MOS Best Per Call
	RTP Calls With Continuous Path Confirmation
	RTP Calls With Interrupted Path Confirmation
	RTP Calls Without Path Confirmation
	SIP Bytes Transmitted
	SIP Bytes Received
	SIP Signaling UDP Packets Transmitted
	SIP Signaling UDP Packets Received
	RTP Path Confirmation Status
	RTP MOS
	RTP Worst MOS
	RTP Best MOS
	· INTE Deal MICO

Specifications of the Traffic Simulator. Telephony / SIP based IP Video Telephony.

Specificat	ions of the Traffic Simulator, Telephony / SIP based IP Video Telephony.
	RTP Bytes
	RTP Packets
	RTP Bad Packets
	RTP Lost Packets
	RTP Missorder Packets
	RTP Duplicate Packets
	RTP Packets With Jitter Up To 1ms
	RTP Packets With Jitter Up To 3ms
	RTP Packets With Jitter Up To 5ms
	RTP Packets With Jitter Up To 10ms
	RTP Packets With Jitter Up To 20ms
	RTP Packets With Jitter Up To 40ms
	RTP Packets With Jitter More Than 40ms
	RTP Average Jitter (ns)
	RTP Min Jitter (ns) BTP Max Jitter (cs)
	RTP Max Jitter (ns)
	RTP DTMFs Detected
	RTP Good DTMF Sequences Detected
	RTP Bad DTMF Sequences Detected
	RTP Packets Dropped By Jitter Buffer
Server Statistics	SIP calls received
	SIP calls completed
	SIP calls active
	 SIP INVITE server transactions received
	SIP INVITE server transactions succeeded
	SIP INVITE server transactions failed
	 SIP INVITE server transactions failed (TIMER H)
	 SIP INVITE server transactions failed (TRANSPORT ERROR)
	 SIP NON-INVITE server transactions received
	SIP NON-INVITE server transactions succeeded
	SIP NON-INVITE server transactions failed
	SIP NON-INVITE requests retransmitted
	SIP REGISTER Requests sent
	SIP 1xx responses expected
	SIP 2xx responses expected
	SIP 3xx responses expected
	SIP 4xx responses expected
	SIP 5xx responses expected
	SIP 6xx responses expected
	SIP 300-699 responses retransmitted
	SIP INVITE requests expected
	SIP ACK requests expected
	SIP BYE requests expected
	SIP 1xx responses sent
	SIP 1xx responses unexpected
	SIP 2xx responses sent
	 SIP 2xx responses unexpected SIP 3xx responses sent
	SIP 3xx responses unexpected
	SIP 4xx responses sent
	SIP 4xx responses unexpected
	SIP 5xx responses sent
	SIP 5xx responses unexpected
	SIP 6xx responses sent
	SIP 6xx responses unexpected

Specifications of the Traffic Simulator, Telephony / SIP based IP Video Telephony.

ALBEDO

_
۷
_
\vdash
z
ш
Δ
_
ш
z
0
U

Specif	Table 18. ications of the Traffic Simulator, Telephony / SIP based IP Video Telephony.
	SIP INVITE requests unexpected
	SIP ACK requests unexpected
	SIP BYE requests unexpected
	SIP CANCEL requests unexpected
	SIP UNKNOWN requests unexpected
	SIP UNKNOWN messages unexpected
	RTP Bytes Sent
	RTP Packets Sent
	RTP Tx Jitter (ns)
	RTP Tx Packets Dropped
	RTP Dropped Packets
	RTP Bytes Received
	RTP Packets Received
	RTP Payload Bytes Received
	RTP Bad Packets Received
	RTP Lost Packets Received
	RTP Missordered Packets Received
	RTP Duplicate Packets Received
	RTP Jitter Min
	RTP Jitter Max
	RTP Packets With Jitter Up To 1ms
	RTP Packets With Jitter Up To 3ms
	RTP Packets With Jitter Up To 5ms
	RTP Packets With Jitter Up To 10ms
	RTP Packets With Jitter Up To 20ms
	RTP Packets With Jitter Up To 40ms
	RTP Packets With Jitter More Than 40ms
	RTP DTMFs Detected
	RTP Good DTMF Sequences Detected
	RTP Bad DTMF Sequences Detected
	RTP Packets Dropped By Jitter Buffer
	RTP MOS Average Instant
	RTP MOS Worst Instant
	RTP MOS Best Instant
	RTP MOS Worst
	RTP MOS Best
	RTP MOS Average Per Call
	RTP MOS Worst Per Call
	RTP MOS Best Per Call
	RTP Calls With Continuous Path Confirmation
	RTP Calls With Interrupted Path Confirmation
	RTP Calls Without Path Confirmation
	SIP Bytes Transmitted
	SIP Bytes Received
	SIP Signaling UDP Packets Transmitted
	SIP Signaling UDP Packets Received
	RTP Path Confirmation Status
	RTP MOS
	RTP Worst MOS
	RTP Best MOS
	RTP Bytes
	RTP Packets BTB Pad Packets
	RTP Bad Packets BTP Leat Packets
	RTP Lost Packets
1	RTP Missorder Packets

- RTP Missorder Packets
- RTP Duplicate Packets

	Та	able 18.	
Specifications of the	Traffic Simulator,	; Telephony / SIP based IP Video Telephor	ny.

Speemee	
	RTP Packets With Jitter Up To 1ms
	RTP Packets With Jitter Up To 3ms
	RTP Packets With Jitter Up To 5ms
	RTP Packets With Jitter Up To 10ms
	RTP Packets With Jitter Up To 20ms
	RTP Packets With Jitter Up To 40ms
	RTP Packets With Jitter More Than 40ms
	RTP Average Jitter (ns)
	RTP Min Jitter (ns)
	RTP Max Jitter (ns)
	RTP DTMFs Detected
	RTP Good DTMF Sequences Detected
	RTP Bad DTMF Sequences Detected
	RTP Packets Dropped By Jitter Buffer
Relevant Standards	RFC 3261, SIP: Session Initiation Protocol
	• RFC 2327, SDP
	RFC 2976, The SIP INFO method
	RFC 3262, Reliability of Provisional Responses in Session Initiation protocol (SIP)
	RFC 3264, An Offer/Answer Model with the Session Description Protocol (SDP)
	 RFC 3265, Session Initiation Protocol (SIP)-Specific Event Notification
	RFC 3311, The Session Initiation Protocol (SIP) UPDATE Method
	RFC 3515, The Session Initiation Protocol (SIP) Refer Method
	RFC 3428, Session Initiation Protocol (SIP) Extension for Instant Messaging
	RFC 3966, The tel URI for Telephone Numbers
	RFC 3550, RTP: A Transport Protocol for Real-Time Applications
	RFC 3551, RTP Profile for Audio and Video Conferences with Minimal Control
	RFC 2833, RTP Payload for DTMF Digits, Telephony Tones and Telephony Signals
	RFC 3389, Real-time Transport Protocol (RTP) Payload for Comfort Noise (CN)

In addition to the features described that apply to the SIP signaling protocol, the Test System supports other signalling forms such as Skinny (Item 925-3503), H.323 (Item 925-3504) H.248/MEGACO (item 925-3505). For each of these protocols, there is an specific support of metrics that characterize its performance.

Unicast and Multicast Video

The Integrated Test System can generate flows of multicast video traffic suitable for IPTV applications (item 925-3105). Unicast video applications suitable for video services on demand (VoD) are also supported natively by the Integrated Test System (Item 925-3104). As in other applications, both servers are tested IPTV / VoD and customers.

It support most common codecs today, including MPEG-2, MPEG-4, H.264 and WM9. The video programs can be both standard definition (SD) and High Definition (HD).

Among the metrics of interest include the MDI, QoS statistics, video MOS, EPSNR and latency parameters in channel changing (zapping delay) associated with IGMP and MLD protocols. In VoD applications latency statistics in the channel change are being replaced by latency play / pause associated with the protocol RTSP.

With the aim of maximizing the ability to make measurements on video signals are included in the basic Test System setup options required for advanced analysis of video quality. In the video advanced statistical metrics include MOS-V absolute and MOS-V relative. For both, include means computed for all packets from the start of flow and interval statistics can be initialized by the user.

ONFIDENTIAL

C

Features	Mix IPTV, voice and data traffic in the same test
	Support for RTP/UDP or UDP for video transmission
	 Near wire-speed video transmission with very low jitter
	Channel change performance testing with latency measurements on a per-subscriber basis
	 Support for interleaving multicast and VoD commands on client
	 Support for user-specified video files or synthetic data using IxLoad servers
	 Channel viewing sequences such as sequential, concurrent and random for user-realism
	Channel viewing profiles based on statistical distribution models for prime-time emulation
	Support for channel switch delay emulation
	Customizable client headers
	Configurable TOS and DSCP bit settings
	Video quality metrics to measure both transmission quality using MDI and perceptual video quality
	 Video quality metrics on a per-subscriber basis
	 Per video stream statistics such as jitter, latency, loss, bit rates
	 MPEG level statistics on number of I, B and P frames received per video stream
	 Support for jitter buffer emulation to model and characterize STB behavior
	Emulation of video on demand (VoD) subscribers
	Emulation of high-performance VoD servers
	 Real-time streaming protocol (RTSP) over IPv4 and IPv6 network
	 RTP media streams over raw UDP and RTP/UDP transport
Video Codecs	 MPEG2, MPEG4, H.264 and others over MPEG2-TS streams
	MPEG4, H.264 and WM9
	 Support for native MPEG4 transport of High definition streams
	 Support for single-program (SPTS) and multi-program transport streams (MPTS)
Client Statistics	Active Multicast Channels
	Multicast Channels Requested
	Multicast Requests Successful
	Multicast Requests Failed
	VoD Streams Played
	IGMP Queries Rcvd
	IGMP Reports Sent
	IGMP Leaves Sent
	MLD Queries Rcvd
	MLD Reports Sent
	MLD Leaves Sent
	Join Latency
	Leave Latency
	Channel Switch Latency
	RTSP Bytes Sent
	RTSP Bytes Received
	RTSP Packets Sent
	RTSP Packets Received
	RTSP Presentations Active
	RTSP Presentations Playing
	RTSP Presentations Paused
	RTSP Presentations Requested
	RTSP Presentation Requests Successful
	RTSP Presentation Requests Failed
	RTSP DESCRIBE Sent
	RTSP SETUP Sent
	RTSP PLAY Sent
	RTSP PAUSE Sent
	RTSP TEARDOWN Sent
	RTSP DESCRIBE Successful
	RTSP SETUP Successful
	RTSP PLAY Successful
	RTSP PAUSE Successful

 Table 19.

 Technical specifications of the IPTV traffic simulator.

_
∢
_
⊢
z
ш
Δ
—
ш
z
0
C

 Table 19.

 Technical specifications of the IPTV traffic simulator.

RTSP TEARDOWN Successful
RTSP DESCRIBE Failed
RTSP SETUP Failed
RTSP PLAY Failed
RTSP PAUSE Failed
RTSP TEARDOWN Failed
Average Play latency
Average Pause latency
Video Simulated Users
Frame Stats Disabled
Quality Metrics Disabled
Total Bytes Rovd Total products Double
Total packets Rcvd
Total Loss
Unexpected UDP Packets Received
RTP Packets
Global Jitter
Jitter less than 50 us
Jitter between 50 - 100 us
 Jitter between 100 - Overload Packets Dropped
Total RTP Packets Lost
Total Out Of Order RTP Packets Rcvd
Total Duplicate 500 us
Jitter between 500 us - 2 ms
Jitter between 2 - 5 ms
Jitter between 5 - 10 ms
Jitter greater than 10 ms
Inter Packet Arrival Time between 0 - 2 ms
 Inter Packet Arrival Time between 2 - 5 ms
 Inter Packet Arrival Time between 5 - 10 ms
Inter Packet Arrival Time between 10 - 25 ms
Inter Packet Arrival Time between 25 - 50 ms
Inter Packet Arrival Time between 50 - 100 ms
Inter Packet Arrival Time between 100 - 200 ms
 Inter Packet Arrival Time between 200 - 500 ms
Inter Packet Arrival Time greater than 500 ms
Active
Stream Name
Transport
Video Codec
Stream Bit Rate
• MDI-DF
MIN MDI-DF
MAX MDI-DF
• AVG-MDI-DF
• MDI-MLR
Bytes
I Frames Rcvd
P Frames Rovd
B Frames Royd
Packets
Loss
Jitter
Inter Pkt Arrival Time Min later Pkt Arrival Time
Min Inter Pkt Arrival Time
Control Sent

31 / 68

NFIDENTIAL

0 0

Max Inter Pkt Arrival Time
Packet Latency (ns)
Min Packet Latency (ns)
Max Packet Latency (ns)
Join Latency (ms)
Join Latency (ns)
Leave Latency (ms)
Channel Switch Latency
Channel Gap Duration
Channel Overlap Duration
Data Rcvd
RTP Packets Lost
RTP Packets Out of Order
Jitter Buffer Packets Accepted
Jitter Buffer Packets Early
Jitter Buffer Packets Discarded
Jitter Buffer Packets Discarded (Underrun)
Jitter Buffer Packets Discarded (Overrun)
• MOS_V
Video Service Quality
Gap Video Service Quality
Burst Video Service Quality
Burst Count
Avg Gap Len (Pkts)
• Avg Burst Len (Pkts)
Degradation (Loss)
Degradation (Discard)
Degradation (Video Codec)
Current Jitter Buffer Packets Accepted
Current Jitter Buffer Packets Discarded
Current JB Packets Lost
Current Video Service Quality
Unicast Bytes
Unicast Packets
Multicast Bytes
Multicast Dytes Multicast Packets
Unicast Join Latency Multipage Join Latency
Multicast Join Latency
D-A overlap
 A Server Channel Requested A Server Requests Successful
· · · · · · · · · · · · · · · · · · ·
A Server Requests Failed
D Server Requested
D Server Requests Successful
D Server Requests Failed
D Server Requests Failed - Control
D Server Requests Failed - Data
V Server Requested
V Server Requests Successful
V Server Requests Failed
Active D Server Playing
Active V Server Playing
Active V Server Paused
 Active A Server Streams

Table 19.Technical specifications of the IPTV traffic simulator.

∢
—
⊢
z
ш
Ω
—
ш
z
0
C

Table 19.
Technical specifications of the IPTV traffic simulator.

Total Streams Playing

Server Statistics	Total Streams Playing
	No of Multicast Streams Playing
	No of VoD Streams Active
	No of VoD Streams Playing
	No of VoD Streams Paused
	No of Multicast Streams Played
	No of VoD Streams Played
	Total Streaming Bit Rate
	Multicast Streams Bit Rate
	VoD Streams Bit Rate
	RTSP Presentations Received
	RTSP Presentations Successful
	RTSP Presentations Failed
	RTSP Bytes Sent
	RTSP Bytes Received
	RTSP Packets Sent
	RTSP Packets Received
	RTSP Play Latency (ms)
	RTSP Commands Received
	RTSP DESCRIBE Received
	RTSP SETUP Received
	RTSP PLAY Received
	RTSP PAUSE Received
	RTSP TEARDOWN Received
	RTSP Response Codes Sent (2xx)
	RTSP Response Codes Sent (3xx)
	RTSP Response Codes Sent (4xx)
	RTSP Response Codes Sent (5xx)
	RTSP Response Codes Sent (6xx-1xxx)
	Total Bytes Sent
	Total Packets Sent
	Tx Jitter (ns)
	Tx Packets Dropped
	V Server requests Received
	V Server requests Successful
	V Server requests Failed
	V Server requests Failed - Bandwidth
	V Server requests Failed - Port Overload
	V Server requests Failed - Other Reasons
	D Server requests Received
	D Server requests Successful
	D Server requests Failed
	D Server requests Failed - Bandwidth
	D Server requests Failed - Port Overload
	D Server requests Failed - Other Reasons
	Active A Server Streams Playing
	Active D Server Streams Playing
	Active V Server Streams
	Active V Server Streams - Playing
	Active V Server streams - Paused
Relevant Standards	RFC 2326 - Real Time Streaming Protocol (RTSP)
	RFC 3550 - RTP: A Transport Protocol for Real-Time Applications
	RFC 3376 - Internet Group Management Protocol, Version 3
	RFC 4445 - A Proposed Media Delivery Index (MDI)
	RFC 2250 - RTP Payload Format for MPEG1/MPEG2 Video
	RFC 2327 - SDP: Session Description Protocol

Server Statistics

NTIAL

FIDE

z o

с

The MOS-V on the perceptual quality is estimated considering the effects of encoding processes, the impact of disruptions to the IP layer and the effectiveness of recovery mechanisms used by the transmission system. However, do not take into account the image size, resolution, frame rate or scanning method (interlaced or progressive).

Some video formats offer better quality than other intrinsically. For example the quality of a coded signal in HD is higher than the one in SD, one with a frame rate of 60 Hz is more than a 30 Hz and a 1080p format is better than one with 1080i or 720p. The Absolute MOS-V takes into account these factors and considered in the calculation of quality.

In addition to the metric MOS-V, the video analytic provides bandwidth statistics, metrics specific to Tables I, P and B, analysis of MDI, and EPSNR.

	Table	20.		
Advanced	Analysis	of	Video	Traffic.

Video and Bandwidth Informa-	Video Codec: The video CODEC type for the video stream.
tion (per Stream)	• Frame Rate: The video frame rate, in frames per one thousand seconds. e.g. 29,970 equals 29.97
	frames per second.
	Frame Width: The video frame image width, in pixels.
	Frame Height: The video frame image height, in pixels.
	• Average Video Bandwidth (kbps): The average video bandwidth, measured over the interval, excluding transport packet header overhead and error correction/retransmission.
	• Peak Video Bandwidth (kbps): The peak video bandwidth, measured during a 1-second window, excluding transport packet header overhead and error correction/retransmission.
Absolute and Relative MOS (per Stream)	Average Absolute MOSV: Absolute MOS for the video stream, averaged over the statistics Update Interval configured on the video client Statistics Options tab.
	Average Relative MOSV: Relative MOS for the video stream, averaged over the statistics Update Interval configured on the video client Statistics Options tab
	Average Absolute MOSA: Absolute MOS for the audio stream, averaged from stream start to the current time.
	Average Absolute MOSAV: Audio/video (multimedia) MOS for the stream, averaged from stream start to the current time.
	• Interval Absolute MOSV: Absolute MOS for the video stream, averaged over the statistics Update Interval configured on the video client Statistics Options tab.
	Interval Relative MOSV: Relative MOS for the video stream, averaged over the statistics Update Interval configured on the video client Statistics Options tab.
Frame Statistics (per Stream)	I Frames Rcvd: A count of the number of stream video Iframes received during the interval config- ured on the video client Statistics Options tab.
	• P Frames Rcvd: A count of the number of stream video P-frames received during the interval con- figured on the video client Statistics Options tab.
	• B Frames Rcvd: A count of the number of stream video B-frames received during the interval con- figured on the video client Statistics Options tab.
	• I Frames Impaired: A count of the number of stream video Iframes that were impaired during the interval configured on the video client Statistics Options tab.
	• P Frames Impaired: A count of the number of stream video P-frames that were impaired during the interval configured on the video client Statistics Options tab.
	• B Frames Impaired: A count of the number of stream video B-frames that were impaired during the interval configured on the video client Statistics Options tab.
	• Inter I Frame Gap: The average I-frame inter-arrival jitter, in milliseconds. The inter-arrival jitter is computed relative to the expected arrival time based on the frame rate.
Scene Analysis (per Stream)	Scene Detail Level: The instantaneous amount of detail, expressed on a scale of 0 (little detail) to 100 (maximum detail).
	• Scene Motion Level: The instantaneous amount of motion, expressed on a scale of 0 (no motion) to 100 (continuous motion).
	• Scene Panning Level: The instantaneous amount of panning, expressed on a scale of 0 (no pan- ning) to 100 (continuous panning).

ONFIDENTIAL

C

	Advanced Analysis of Video Irane.
Transport Metrics (per Stream)	MPEG2 TS Loss: Number of MPEG-2 Transport Stream packets lost.
	MDI-DF: Media Delay Index \u2013 Delay Factor experienced on stream.
	MDI-MLR: Media Delay Index - Media Loss Rate experienced on stream.
	• PPDV: The instantaneous Packet-to-Packet Delay Variation (RFC3550), in milliseconds, sampled
	at the end of the interval configured on the video client Statistics Options tab.
Jitter Buffer (per Stream)	JB Packets Rcvd: The number of stream transport packets received by the jitter buffer.
	JB Packets Lost: The number of stream transport packets lost in the network.
	JB Packets Discarded: The number of stream transport packets discarded by the endpoint due to late arrival.
Video Description (per User)	Codec Type: The video CODEC type for the video stream.
	GOP Structure: The GOP structure expressed as a series of 'I', 'B', 'P' characters describing the
	frame type series in the structure.
	Avg GOP Length: The average GOP length, in frames.
	• Avg Inter I Frame Gap (Frames): The average gap, in frames, between I frames (excluding the
	I-frames)
	Frame Width: The video frame image width, in pixels.
	Frame Height: The video frame image height, in pixels.
	• Frame Rate: The video frame rate, in frames per one thousand seconds \u2013 e.g. 29,970 equals
	29.97 frames per second.
	RTP Clock Rate: Clock rate used for RTP connection.
	Video PID: Package Identifier used on video stream.
	Audio PID: Package Identifier used on audio stream.
MOS (per User)	Average Absolute MOS V: he average absolute video stream MOS over the stream duration.
	Average Relative MOS V: The average relative video stream MOS over the stream duration.
	Average MOS A: The average audio stream MOS over the stream duration.
	Average MOS AV: The average audio/video stream MOS over the stream duration.
	Interval Absolute MOS V: The absolute stream instantaneous video MOS sampled at the end of the
	interval configured on the video client Statistics Options tab.
	• Interval Relative MOS V: The relative stream instantaneous video MOS sampled at the end of the
	interval configured on the video client Statistics Options tab.
	• EPSNR (ATIS): The Estimated Peak Signal to Noise Ratio (PSNR) calculated according to ATIS
	specifications.
Frame Statistics (per User)	I Frames Rcvd: The number of video I-frames received.
	I Frames Impaired: The number of video I-frames impaired by packet loss or discard.
	P Frames Rcvd: The number of video P-frames received.
	• P Frames Impaired: The number of video P-frames impaired by packet loss or discard.
	B Frames Rcvd: The number of video B-frames received.
	• B Frames Impaired: The number of video B-frames impaired by packet loss or discard.
	SI Frames Rcvd: The number of video SI-frames received.
	• SI Frames Impaired: The number of video SI-frames impaired by packet loss or discard.
	SP Frames Rcvd: The number of video SP-frames received.
	• SP Frames Impaired: The number of video SP-frames impaired by packet loss or discard.
	• I Frame Pkts Rcvd: The number of transport packets received containing video I-frame information.
	I Frame Pkts Lost: The number of transport packets lost containing video I-frame information.
	• I Frame Pkts Discarded: The number of transport packets discarded due to late arrival containing video I-frame information.
	• P Frame Pkts Rcvd: The number of packets received containing video P-frame information.
	• P Frame Pkts Lost: The number of transport packets lost containing video P-frame information.
	 P Frame Pkts Discarded: The number of transport packets discarded due to late arrival containing video P-frame information.
	 B Frame Pkts Rcvd:The number of packets received containing video B-frame information.
	 B Frame Pkts Lost: The number of transport packets lost containing video B-frame information.
	 B Frame Pkts Discarded The number of transport packets discarded due to late arrival containing
	video B-frame information.

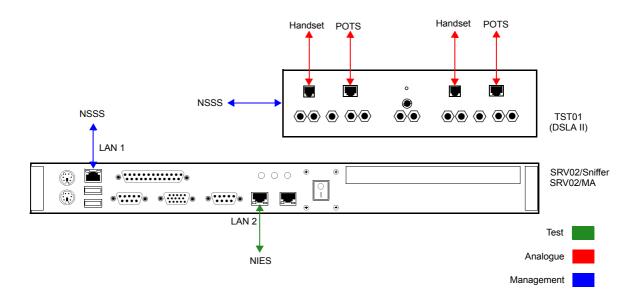
Table 20.Advanced Analysis of Video Traffic.

	35	/	68	
--	----	---	----	--

Stream and Frame Bandwidth	Avg Video Bw (Kbps: The average video bandwidth, measured during a one second window,
(per User)	excluding transport packet header overhead and error correction/retransmission.
	Peak Video Bw (Kbps): The peak video bandwidth, measured during a one second window,
	excluding transport packet header overhead and error correction/retransmission.
	Avg Audio Bw (Kbps): The average audio bandwidth, measured during a one second window,
	excluding transport packet header overhead and error correction/retransmission.
	• I Frame Avg Video Bw (Kbps): The average bandwidth of I-frame transport packets received, in bits/second.
	I Frame Peak Video Bw (Kbps): The maximum bandwidth of I-frame transport packets received, in bits/second.
	P Frame Avg Video Bw (Kbps): The average bandwidth of P-frame transport packets received, in bits/second.
	• P Frame Peak Video Bw (Kbps): The maximum bandwidth of P-frame transport packets received, in bits/second.
	B Frame Avg Video Bw (Kbps): The average bandwidth of B-frame transport packets received, in bits/second.
	B Frame Peak Video Bw (Kbps): The maximum bandwidth of B-frame transport packets received, in bits/second.
Frame and Packet JItter (per	Frame Inter Arrival Jitter (ms): The average frame inter-arrival jitter, in milliseconds. The
User)	inter-arrival jitter is computed relative to the expected arrival time based on the frame rate.
	I Frame Inter Arrival Jitter (ms): The average I-frame inter-arrival jitter, in milliseconds. The
	inter-arrival jitter is computed relative to the expected arrival time based on the frame rate.
	 PPDV (ms): The stream transport Packet-to-Packet Delay Variation (RFC3550), in Q4 fixed-point milliseconds.
	PPDV (ms): The maximum stream transport Packet-to-Packet Delay Variation (RFC3550), in Q4 fixed-point milliseconds.
Jitter Buffer (per User)	JB Packets Rcvd: The number of stream transport packets received.
	JB Packets Lost: The number of stream transport packets lost in the network.
	JB Packets Discarded: The number of stream transport packets discarded by the endpoint due to late arrival.
Scene Analysis (per User)	Scene Detail Level: The instantaneous amount of detail, expressed on a scale of 0 (little detail) to 100 (maximum detail).
	Scene Motion Level: The instantaneous amount of motion, expressed on a scale of 0 (no motion) to 100 (continuous motion).
	• Scene Panning Level: The instantaneous amount of panning, expressed on a scale of 0 (no pan- ning) to 100 (continuous panning).

Table 20.Advanced Analysis of Video Traffic.

Global Video Quality Statistics	I Frames Rcvd: The number of video I-frames received.
	P Frames Rcvd: The number of video P-frames received.
	B Frames Rcvd: The number of video B-frames received.
	I Frames Impaired: Number of I-frames impaired due to packet loss or discards.
	• P Frames Impaired: Number of P-frames impaired due to packet loss and/or discards. This does not include frames impaired due to error propagation through temporal reference.
	• B Frames Impaired: Number of B-frames impaired due to packet loss and/or discards. This does not include frames impaired due to error propagation through temporal reference.
	 Avg Current Absolute MOS V: Absolute MOS for all the video streams, averaged from stream state to the current time.
	 Avg Current Relative MOS V: Relative MOS for all the video streams, averaged from stream star to the current time.
	• Avg Current MOS AV: Audio/video (multimedia) MOS for all streams, averaged from stream start the current time.
	• Avg Current MOS A: Absolute MOS for all the audio streams, averaged from stream start to the current time.
	 Avg Complete Absolute MOS V: Absolute MOS for all completed video streams, averaged acros all streams.
	 Avg Complete Relative MOS V: Relative MOS for all completed video streams, averaged across a streams.
	Avg Complete MOS AV: Audio/video (multimedia) MOS for all completed streams, averaged across all streams.
	 Avg Complete MOS A: Audio MOS for all completed streams, averaged across all streams. Avg Interval Absolute MOS V: Absolute MOS for all video streams, averaged over the statistics Update Interval configured on the video client Statistics Options tab.
	• Avg Interval Relative MOS V: Relative MOS for all video streams, averaged over the statistics Update Interval configured on the video client Statistics Options tab.
Global Video Bandwidth Statis- tics	 Avg Video BW: The average video bandwidth, in bits/second, measured over the interval, excluding transport packet header overhead and error correction/retransmission.
	 I Frame Avg Video BW: The average bandwidth of I-frame video content transmitted, in bits/sec- ond.
	P Frame Avg Video BW: The average bandwidth of P-frame video content transmitted, in bits/se ond.
	B Frame Avg Video BW: The average bandwidth of B-frame video content transmitted, in bits/se ond.


Table 20.Advanced Analysis of Video Traffic.

C

5. VOIP TRAFFIC GENERATION AND ANALYSIS SUBSYSTEM

The Traffic Generation and Analysis Subsystem (TGAS) provides test traffic when needed and performs different kinds of analysis of traffic generated by the own TGAS or other Test System subsystems. The TGAS is able to generate an analyses both signalling (SIP) and packetized voice (G.711, G.729,... over RTP).

Figure 6. The TGAS is made up by two different devices, the TST01 generates different kinds of test analogue audio signals. The SRV02/MA is a software installed in the SRV02 that generates and analyses test VoIP signals.

The TGAS is made up of different software and hardware components:

- DSLAII: The Digital Speech Level Analyzer (DSLA) II provides a pair of stable, high quality analogue interfaces to test any device able to generate telephone speech signals such as (but not limited to) VoIP telephones. The DSLA II can either replace the whole customer premises equipment or just the telephone handset. The first setup is suitable to test network performance and the second one is the best suited to check end-to-end quality provided by the network and the end user equipment. The DSLA provides two RJ-11 and two RJ-22 ports. The RJ-11 ports are needed when the whole telephone is going to be replaced by the test set and the RJ-22 can be used when it is wanted to keep the telephone in the network but the handset is going to be replaced by the test equipment. The DSLA II provides an Ethernet management interface that enables the equipment to interact with other test or management devices.
 - VN: The Virtual Node (VN) is the IP counterpart of the DSLA II. The VN generates
 packetized speech signals and signalling on demand. The VN can send/receive signals to/from remote VoIP devices or testers such as the DSLA II. The VN is a software
 that is installed in the SRV02 and it does not require any specific configuration.
- MultiDSLA: The MultiDSLA manages tests and collects result data from all the DSLA II and VN installed in the network. It can also be used for result post-processing and graphical presentation, report generation and test scheduling. The MultiDSLA also provides basic signalling analysis of SIP calls between the test devices and the DUT. The MultiDSLA is a software installed in the SRV02.
- SIPp: This is SIP generation/analysis tool developed by Hewlett-Packard and currently distributed free of charge and available for download from the Internet. SIPp is able to generate almost any custom SIP message and emulate complex protocol transactions. SIPp is based on a powerful scripting language specially designed for flexible generation of custom SIP messages. Usage of SIPp has been kept to the minimum

TIAL

z

ш

Г П

z

0

possible. Transactions based on real SIP devices such as the VGW01 or reference VoIP phones is preferred to the synthetic transactions generated with SIPp. However, SIP has been used when the Test System devices exhibit a not-standard or buggy behavior. All scripts needed to work with SIPp are provided and the way they are used is addressed in detail in every test where they are used.

 Sniffers: SIP signalling and other complementary protocols (DNS, DHCP,...) can be analyses by means a traditional IP sniffer. Sniffers capture the traffic they see in the network and presents the contents in a structured way. The IP traffic sniffer installed in the TGAS will not normally be used in the acceptance suite. IP packet analysis will be performed by the VGW01. This is the preferred method because the VGW01 has some packet contents display modes that is well suited for message oriented protocols like SIP. Other two sniffers are used in the Test System, ngrep for packet capture in the Test System console and WireShark for the SRV02. Both are free and can be downloaded and installed from the Internet.

All the testing tools mentioned are installed in two different boxes, the TST01 (DSLAII) and the SRV01 (VN, MultiDSLA, WireShark). Both the TST01 and the SRV01 are connected to the management VLAN (VLAN 103) in the NSSS and furthermore, the SRV01 LAN 2 interface is connected to the NIES to enable controlled impairment emulation over the test traffic.

Digital Speech Level Analysis

A remarkable feature of the TGAS is that all possible voice analysis if performed at the speech level. That means that IP packets are not directly involved in such analysis and only the speech that results from the encoding and transmission processes is used for testing. This, has two important advantages:

- Coding and decoding processes are all taken into account in the measure results. All from the IP packet segmentation, reassembly and buffering to analogue voice-band signal amplification is considered by the testing procedure. This would not be possible with the more simple packet-based analysis performed by other testing tools.
- Any speech signal, and not only VoIP signals are suitable for the testing. This includes speech signals generated by cellular telephones (GSM, UMTS,...), fixed line POTS/ISDN telephones or VoIP services over wireless links (IEEE 808.11 for example). Although there is no specific test in the acceptance suite to check performance of these devices, it is straightforward and cost less to extend the already defined QoE tests to some or all these devices.

Most of the tests described in the acceptance suite require close collaboration between the TGAS and the other subsystems that made up the Test System. In a typical setup for a VoIP telephone, the telephone handset is replaced with the TST01. The TST01 provides RJ-22 ports that are commonly used for connections between the handset and the telephone (but other ways to connect the DUT to the TST01 are also possible). The DUT (the VoIP telephone) encodes the audio received from the TST01 and delivers the corresponding VoIP packets to the Test System network. The DUT also receives VoIP packets coming from the Test System, decodes them and forwards them to the TST01 for speech level analysis. The packets received/sent by the DUT are routed by the NSSS (usually through the NIES) to other Test System devices like the SRV02 where they can be processed by software like the VN.

All the information collected by the TST01 or the SRV02/VN is delivered to the Multi-DSLA for post-processing. To report results to the MultiDSLA, the TST01 uses the management Ethernet interface and the VN uses the same IP network that it uses to send/receive test data. In the particular case of the Test System, the VN and the MultiDSLA are installed in the same machine and therefore no physical IP link needs to be created between them.

< ⊢

z

ш

ш z

0

O

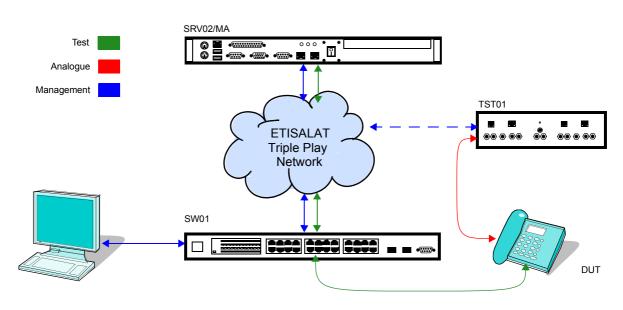


Figure 7. Typical test setup that makes use of the TGAS.

In the acceptance Test System, the MultiDSLA is provided with a simple configuration for a VN interface (VN 1) and two DSLA interfaces (DSLA 1 and DSLA 2). The former corresponds with the VN installed in the SRV02. The DSLA interfaces are the DSLA Channel A and Channel B. Tests of the acceptance suite always use the DSLA Channel 1 (DSLA 1 node).

The information processed by MultiDSLA is available from the Test System console by means a remote desktop connection established through the management VLAN.

Traffic Sniffers

The TGAS uses to different sniffers, WireShark and ngrep but none of them is the preferred sniffing tool. Most of the tests of the acceptance suite use the SIP sniffer provided by the VGW01 in the NSSS. WireShark and ngrep are only used when for some reason the VGW01 sniffer cannot be used.

- WireShark: is a widely distributed software. It is free of charge and it can be installed over Linux or Windows platforms. It is installed in the SRV01 in the Test System. It is mainly used to monitor the activity of the DNS server and their clients. The detailed usage of this tool is described in the test suite.
- ngrep: is a command line tool for Linux. It is in fact installed in the system console. (not in the TGAS). This sniffer is well suited to capture message-based protocols like SIP. It is used when the VGW01 is replaced by SIPp to generate highly customized signalling. In this case ngrep analyses the SIP transactions between SIPp and the DUT. The ngrep tool requires administrator rights to be used. Details about usage of ngrep is given within the acceptance suite.

SIPp Scripts

SIPp is a tool for generation and analysis of custom SIP signalling and media. SIPp is useful when it is wanted to generate uncommon SIP messages or even messages containing controlled errors in SIP headers and payloads. All messages that cannot be generated by the Test System in any way, are generated with SIPp. SIPp is not in-

ALBEDO Telecom - B6523022 - Ramón Turró, 100 - Barcelona - 08005 - www.telecom.albedo.biz

TIAL

z

ш

Р П Л

z o

O

stalled in the TGAS, it is a software that has to be compiled and installed in the system console. The SIPp version that has been used for the Test System is a CVS version (*sipp.2009-07-29.tar.gz*). The software has to be compiled from the source files. Support for authentication and PCAP play has to be selected before starting the compilation process:

[user@host~] make pcapplay_oss]

More details about compilation and installation procedures, along with usage description and applications of this tool is found in the documentation.

SIP is based in an scripting language based on the XML standard. That means that SIPp scripts are XML files with an special syntax suited for SIP message generation, manipulation an analysis. The Test System includes all the scripts necessary to run all the tests included in the acceptance suite. Some of the scripts have been designed with a particular test in mind and others are more general and can be used in several tests.

- *incomingcall-180nosdp.xml*: This script is for the test 8382-01. It generates a *180 Ringing* message without SDP payload during a SIP transaction. In this script SIPp acts as the UAS while de DUT is the UAC.
- incomingcall-180sdp.xml: This script is for the test 8383-01. It generates a 180 Ringing message with an SDP payload during a SIP transaction. In this script SIPp acts as the UAS while de DUT is the UAC.
- *incomingcall-183nosdp.xml*: This script is for the test 8380-01. It generates a *183 Session Progress* message with SDP payload during a SIP transaction. In this script SIPp acts as the UAS while de DUT is the UAC.
- incomingcall-183sdp.xml: This script is for the test 8381-01. It generates a 180 Ringing message without an SDP payload during a SIP transaction. In this script SIPp acts as the UAS while de DUT is the UAC.
- incomingcall-with-proxiauth.xml: Implements a proxy-authentified INVITE. In this script, SIP is the UAS and the DUT is the UAC. It is worth noting that the script does not really authenticates the UAC. It generates the message any proxy would issue to authenticate users but it does not implement the authentication algorithm. This is however enough for the purposes of the test.
- incoming-register-noauth.xml: This is an script that accepts and replies registration requests from remote SIP devices. In this script, SIPp is also the UAS and the DUT the UAC.
- outgoingcall-with-reinvite.xml: This script calls a remote SIP device and starts a media session and before the end of the media session finishes it attempts to issue a re-INVITE message. In this script SIP is the UAC and the remote device is the UAS. This script is to be used in test 11490-01 (session refresh).
- register-with-authentication.xml: This script attempts to register SIPp in a remote SIP
 registrar. The script will reply to a register authentication request from the registrar
 with a correct response to authentication challenge. In the authentication script, SIPp
 acts as the UAC and the registrar is the UAS.

Remote Access

Access to the SRV01 and the software installed in this server is performed from the system console through the *rdesktop* tool already described in previous sections. Access to the TST01 is indirectly done by means rdesktop and the MultiDSLA software installed in the SRV01.

6. PERFORMANCE TESTING LAYER 2 / LAYER 3

In addition to its ability to test the traffic of one or more users Integrated Test System provides the ability to generate traffic generated layer 2 or layer 3 to stress the DUT / SUT and verify its operation in extreme load conditions. Specifically, we support the tests defined in RFC 2544, RFC 2889 (Item 928-0102), RFC 3511 (Item 928-0203) and RFC 3918 (item 928-0243).

The RFC 2544 is a standard widely used to characterize the performance of network elements. RFC 2544 tests supported by the Integrated Test System is the Back to Back, Frame Loss, Latency and Throughput.

	Description of the parameters supported in RFC 2544 tests
Back to Back Test	The Back to Back test determines the maximum time that the DUT can receive and forward without frame loss. Frames are sent at a user-specified rate, generally the maximum theoretical rate based on the speed of the port. The results of the test show the number of back-to-back frames obtained for each frame size and the average and total back-to-back frames for all the trials. Frames can be MAC only, IPv4 or IPv6. Results include total back to back frames without loss for each frame size.
Frame Loss Test	The Frame Loss test determines how many frames the DUT loses at various frame rates. The num- ber of frames to transmit is specified along with the initial transmit rate, and the percentage decrease in the frame rate (the Granularity parameter) for each iteration. Frames can be MAC only, IPv4, IPv6 (with or without Extension Headers) or IPv4/IPv6 mixture. Results include frame loss at various rates for each frame size.
Latency Test	The Latency test determines the latency of the DUT. In the Latency test, frames are transmitted for a fixed duration. Frames are transmitted and tagged with timestamps. Latency is calculated by sub-tracting the transmit timestamp from the receive timestamp. Frames can be MAC only, IPv4, IPv6 (with or without Extension Headers) or IPv4/IPv6 mixture. Results include latencies for each frame size and the average latencies for all the trials.
Throughput Test	The Throughput test determines the maximum rate at which the DUT receives and forwards frames without any frame loss. Frames are initially sent at a user-specified rate and a binary search algorithm is used to obtain a rate at which the DUT does not lose frames. Frames can be MAC only, IPv4, IPv6 (with or without Extension Headers) or IPv4/IPv6 mixture. Results include: throughput rates in frames per second obtained for each frame size.

Table 21.

Table 22.RFC 2544 test (OPTIONAL)

ID	MAC	IPv4	IPv6
Back to back	X	X	X
Frame Loss	X	X	X
Latency	X	X	X
Throughput	X	X	X

RFC 2889 is an extension to RFC 2544. It applies to DUT / SUT using Ethernet framing. Many of the tests defined by RFC 2889 apply only to multi items.

Table 23.

Description of the parameters supported in RFC 2889 tests (OPTIONAL)

Address Cache Size Test	The Address Cache Size test uses a binary search to determine the size of the address table for each port or for an entire switch. Beginning at half the size of the initial user-specified table size, frames are transmitted at a user-specified frame rate to see if the DUT has properly learned all of the addresses. If no frame loss and no flooding is detected, the address table size is increased and the test is repeated in a binary fashion until the address table size is determined. Results include maximum number of MAC addresses supported by DUT.
-------------------------	---

42 / 68

Desc	cription of the parameters supported in RFC 2889 tests (OPTIONAL)
Address Rate Test	The Address Rate test determines the maximum no drop rate by transmitting frames with multiple addresses based on the initial table size at the user-specified frame rate. The number of frames received on each receive port is counted and the receive rate calculated. The rates are compared and a binary search algorithm is used to calculate the address learning rate of the DUT. Results include address learning rate of DUT.
Broadcast Rate Test	The Broadcast Rate test determines the maximum rate at which the DUT receives and forwards broadcast frames without any loss of frames. A binary search algorithm is used to obtain a rate at which the DUT does not lose frames within an acceptable rate window. The results of the test show the throughput rates obtained for each frame size. Results include broadcast throughput rate per packet size.
Back Pressure Test	The Back Pressure test determines the congestion control back-pressure exerted when multiple ports are transmitting to a single port in order to overload the port. The results of the test show the number of received frames, number of collision frames and the percent loss of frames obtained for each frame size. Results include collision frames, receive frames, percent frame loss.
Head of Line Blocking Test	The Head of Line Blocking test determines the added delay on an non-congested output interface whenever frames are received from an input interface which is also attempting to forward frames to a congested output interface. The results of the test show the number of received frames, number of collision frames and the percent loss of frames obtained for each frame size. Results include collision frames, receive frames, percent frame loss.
Frame Error Filtering Test	The Frame Error Filtering test determines if the DUT correctly filters frames with certain types of errors such as undersized frames, oversize frames, CRC errors, fragments, alignment errors and dribble errors. The results of the test show the type of error transmitted, the number of transmit frames, inter-frame gap and the number of frames in error for each frame size. Results include type of error, IFG, number of frames in error.
Fully Meshed Test	The Fully Meshed test determines the total number of frames that the DUT can handle when it receives frames on all of its ports. The results of the test show the total number of frames transmitted from all the ports and the total number of frames received on all the ports, and the percent loss of frames obtained for each frame size. Dual-mesh capability that supports two separate sets of ports running independently. Results include percent frame loss, average latency, frame loss.
Many to Many Mesh Test	The Many to Many Mesh test determines the frame loss from the total number of frames transmitted from all the ports and the total number of frames received on all the ports. There are two types of many-to-many mesh tests available: round-robin and peak load. Dual-mesh capability that supports two separate sets of ports running independently. Results include frame loss, average latency.
Many to One Throughput Test	The Many to One Throughput test determines the maximum rate at which the DUT receives and for- wards frames from many interfaces to one interface without any loss of frames. A binary search algo- rithm is used to obtain a rate at which the DUT does not lose frames within an acceptable rate window. The results of the test show the throughput rates obtained for each frame size. Results include throughput per frame size.
One to Many Throughput Test	The One to Many Throughput test determines the maximum rate at which the DUT receives and for- wards frames from one interface to many interfaces without any frame loss. A binary search algorithm is used to obtain a rate at which the DUT does not lose frames within an acceptable rate window. This window is the rate within one inter-frame gap of the initial transmit rate. The results of the test show the throughput rates obtained for each frame size. Results include throughput per frame size.
Partially Meshed Test	The Partially Meshed test determines the maximum throughput of the DUT by sending frames from multiple transmit ports to multiple receive ports in a mesh fashion, where the transmit ports do not receive and the receive ports do not transmit. Results include throughput per frame size.

Table 23.

Table 24.					
Support for RFC 2889-based t	testing				

ID	MAC	IPv4	IPv6
Address Cache Size	X		
Address Rate	X		
Broadcast Rate	X		
Back Pressure	X	X	X
Head of Line Blocking	X	X	X

U

Table 24.
Support for RFC 2889-based testing

Frame Error Filtering	X		
Fully Meshed	X	X	X
Many to Many Mesh	X	X	X
Many to One Tput	X	X	X
One to Many Tput	X	X	X
Partially meshed	X	X	X

Contrary to what happens with the standards RFC 2544 and RFC 2889 RFC 3 918 is applicable only when the DUT / SUT is IP. Specifically, the RFC 3918 measures the performance of multicast processing performed by the DUT / SUT. This includes support for IGMP and performance and overall treatment is done in multicast groups.

Table 25.

Description of the parameters supported in RFC 3918 tests

Accumulated Test	The Accumulated test determines the DUT's throughput when clients join a large number of groups at a certain rate. The test stresses the DUT by forcing it to rapidly update its IGMP/MLD group cache and then forward traffic to all the groups. This test functions in a similar way to the Distributed test, but differs from it in that each receive port joins every group, resulting in the same multicast traffic going out multiple ports. Results include frame loss per group.
Aggregated Test	The aggregated test measures a DUT\u2019s ability to maintain IP multicast traffic throughput when a fixed number of clients joined via IGMP/MLD are re-distributed among fewer subnets. To simulate this, the test reduces the number of ports it transmits to while keeping the number of clients fixed. This test uses a one-to-many traffic map and requires at least four ports; one to transmit and three to receive. Results include frame loss, leaked frames per group.
Burdened Group Join Delay Test	This interaction test determines how long it takes a DUT to register multicast clients to a new group or to a group that already exists in the DUTs forwarding table, while forwarding meshed traffic as an interacting factor. This test uses two maps: a one-to-many traffic map for multicast traffic as in the other tests (it is a manual map) and, a many-to-many traffic map for the unicast traffic as burdening traffic (it has to be fully meshed so this is an automatic map). Results include transmit and receive frames per port, Group join delay time (minimum/maximum and average values), burden rate, number of burden ports.
Burdented Latency Test	This interaction test measures the DUTs ability to forward multicast traffic with acceptable latency while forwarding meshed traffic as an interacting factor. The test differs from the Latency test in that it forces the DUT to perform extra processing of packets while multicast traffic is being forwarded for latency measurements. This test uses two maps: a one-to-many traffic map for multicast traffic as in the other tests (it is a manual map) and, a many-to-many traffic map for the unicast traffic as burdening traffic (it has to be fully meshed so this is an automatic map). Results include Frame loss per port, transmit and receive frames per port, average latency per multicast group address.
Distributed Test	The Distributed test determines the DUT\u2019s ability to forward traffic to the correct multicast cli- ents on a per-port basis. In this test, each receive port IGMP/MLD joins a different set of multicast groups. The test sends validation traffic to all the groups to calculate the throughput. This test func- tions in a similar way to the Accumulated test, but differs from it in that each receive port joins a differ- ent set of groups, resulting in different streams of multicast traffic going out different ports of the DUT. Results include frame loss, leaked frames.
Group Capacity Test	The Group Capacity test determines the maximum number of multicast groups that a DUT can regis- ter, using IGMP/MLD, and forward multicast frames to. This test requires at least two ports; one to transmit and one to receive, and uses a one-to-many traffic map. Results include group capacity counts.
Group Join Delay Test	The Group Join Delay test determines how long it takes a DUT to register multicast clients. The test measures the elapsed time between the time a DUT receives a group of IGMP/MLD Join requests and the time the multicast clients begin receiving traffic for the groups they joined. The test can optionally increase or decrease the frame rate to record how different frame rates affect the delay between joining a group and receiving traffic. This test requires a minimum of four ports; one to transmit, at least two to receive, and one to act as the timing port which allows the test to derive timing information for the validation traffic. Results include join delay per group.

Group Leave Delay Test	The Group Leave Delay test determines how long it takes a DUT to remove a client from its multicast table. The test measures the elapsed time between the time a DUT receives a group of IGMP/MLD Leave requests and the time the multicast clients stop receiving traffic for the groups they left. The test can optionally increase or decrease the frame rate to record how different frame rates affect the delay between leaving a group and the cessation of traffic. This test requires a minimum of four ports; one to transmit, at least two to receive, and one to act as the timing port which allows the test to derive timing information for the validation traffic. Results include leave delay per group.
Latency Test	The Latency test measures the average latency of multicast frames sent to clients on multiple sub- nets (ports). The Latency test reveals how much processing overhead the DUT requires, on average, to forward multicast frames. This test differs from the Min Max Latency test in that it transmits special tagged frames and records only their latency, while the Min Max Latency test calculates the average latencies of all the frames it sends. Results include latency per group.
Mesh Test	The Mesh test measures the DUTs throughput per port while it is receiving and forwarding frames on all its ports. This test is similar to the RFC2889 Fully Meshed test, except that this test uses multicast frames. This test requires a minimum of three ports. This test uses a many-to-many traffic map; each port transmits to, and receives from, all other ports. Results include frame loss.
Throughput NDR Test	The Throughput No Drop Rate test allows you to calculate the maximum DUT throughput for IP Multi- cast traffic using either a binary search or a linear search, and to collect Latency and Data Integrity statistics. This test differs from the others in the suite in that it supports PIM and IGMP/MLD and is considered the most flexible test in the suite. Results include NDR throughput, latency, data integrity.
Mixed Class Throughput Test	The Mixed Class Throughput test measures a DUTs throughput when it is receiving and forwarding a mixture of unicast and multicast frames simultaneously on multiple ports. For the unicast traffic, the test uses a one-to-one traffic map. For the multicast traffic, the test uses a one-to-many map and requires at least three ports. Results include throughput, frame loss.
Scale Group Test	The Scale Group Test determines a DUTs multicast throughput using a fixed quantity of traffic and increasing or decreasing the numbers of the multicast groups the traffic is sent to. This test can reveal how rapidly the DUTs multicast throughput increases or decreases based on the number of groups it is transmitting to. This test uses a one-to-many traffic map requiring a minimum of three ports. Results include throughput, frame loss.
Tunneling Throughput Test	This test determines the multicast throughput when a DUT or a set of DUTs interfaces are acting as

Table 25.

Description of the parameters supported in RFC 3918 tests

Tunneling Throughput Test This test determines the multicast throughput when a DUT or a set of DUTs interfaces are acting as tunnel endpoints. Throughput represents the highest rate at which the DUT receives and forwards frames with loss lower than or equal to the specified value for loss tolerance. In this test, encapsulation or tunneling refers to a packet that contains an unsupported protocol feature in a format that is supported by the DUT. A one-to-many traffic mapping is used, with a minimum of two ports required. This test supports only one traffic map which means that only one transmit port must be set. Results include Originating Frame Size, Offered Frames, Tx Frames/Rx Port, Rx Frames, Frame Loss (%), Forwarding Rate (%Tx Line).

Table 26. RFC 3918 tests

ID	МАС	IPv4	IPv6
Accumulated	n.a.	X	X
Aggregated	n.a.	X	X
Distributed	n.a.	X	X
Group capacity	n.a.	X	X
Group Join Delay	n.a.	X	X
Group Leave Delay	n.a.	X	X
Latency	n.a.	X	X
Mesh	n.a.	X	X
Burdened Group Join Delay	n.a.	X	X
Mixed Class Throughput	n.a.	X	X
Scale Group	n.a.	X	X
Tunneling Throughput	n.a.	X	X

ALBEDO Telecom - B6523022 - Ramón Turró, 100 - Barcelona - 08005 - www.telecom.albedo.biz

NTIAL

FIDE

z

0

C

Table 26. RFC 3918 tests

Throughput NDR	n.a.	X	X
Burdened Latency	n.a.	X	X

Table 27.

RFC 3511 applies to firewalls and NAT devices that perform translations or NAPT. They are characterized aspects of great importance when the DUT is a subscriber router. For example, the maximum number of TCP connections supported, the maximum rate of TCP connection establishment and processing of fragmented IP data-grams.

Description of the parameters supported in RFC 3511 tests.				
Denial of Service Handling Test	The Denial of Service Handling test determines the effect of a denial of service attack on a DUT TCP connection establishment rate. The iterative process of the cMax. TCP Connection Establishment Rate is running with the denial of service attack enabled and disabled. The difference between results is the effect of the denial of service attack on the DUTs performance. The DoS attack exploits the TCP three way handshake mechanism by sending TCP SYN attack segments. Results include maximum TCP connection rates per port.			
Illegal Traffic Handling Test	To characterize the behavior of the DUT/SUT when presented with a combination of both legal and illegal traffic. Illegal traffic does not refer to an attack, but traffic which has been explicitly defined by a DUT access control list to drop the illegal traffic flow. The test uses a Max HTTP Transaction Rate test, but mixes legal and illegal traffic in a user definable percentage. Results include maximum HTTP transaction rates per port.			
IP Fragmentation Handling Test	The IP Fragmentation Handling test sends packets which have been fragmented due to crossing a network that supports a smaller MTU (Maximum Transmission Unit) than the actual IP packet. This fragmentation may require the firewall to perform re-assembly prior to the rule set being applied. This test will focus on determining how the additional processing associated with the re-assembly of the packets has on the forwarding rate of the DUT/SUT. This test employs two types of traffic: HTTP 1.1 as non-fragmented traffic and UDP/IP fragmented packets. Results include average transfer rate of non-fragmented transactions and number of requests sent and received.			
IP Throughput Test	The Throughput NDR test uses network layer traffic (stream based) to determine the maximum packet No Drop Rate that can pass through the device or system under test. A binary search with multiple iterations is used to determine this maximum. Multiple packet sizes can be configured. Results include total packets transmitted and received, frame loss, and a packets per second rate.			
Latency Test	The Latency test is used determine and compare the latency of both connectionless network layer traffic and HTTP application layer traffic. Latency is measured for each type of traffic so that comparisons can be made. In addition, line rate and packet sizes can be configured. Results include the maximum and average latency per port.			
TCP Connections Capacity Test	The TCP Connections Capacity test determines the maximum total number of TCP connections the device or system under test can support. The test uses a binary search routine that begins with an initial number of attempted concurrent connections, if successful the test iterates by doubling the concurrent attempted connections until the maximum number of successful connections no longer meets the search tolerance that has been defined. Results include the maximum number of concurrent connections per port.			
HTTP Maximum Transaction Rate Test	The HTTP Maximum Transaction Rate test uses a binary search routine to determine the maximum transaction rate for an HTTP requested object traversing the firewall. To achieve it a set of http client(s) are configured to initiate simultaneously connections to the http server(s). Results include attempted/maximum/average transaction rates per second and total HTTP requests and responses received.			
HTTP Transfer Rate Test	The HTTP Transfer Rate test determines the transfer rate of HTTP requests per second traversing the device or system under test. A definable number of clients are configured along with a Requests per Connection value and an object size. The test calculates the aggregate transfer rate in bits per second. Results include Transfer Rate (bits/sec), and HTTP requests sent and received.			
TCP Maximum Connections Rate Test	The TCP Maximum Connections Rate test finds the maximum TCP connection establishment rate the DUT can handle. To validate the connections, the application performs http transactions from the configured client networks to the server networks. The test employs an iterative search algorithm to determine the maximum rate and the attempted connection rate is varied from iteration to iteration. Results include attempted and actual connection rate (TCP connections/sec.), HTTP requests/responses completed, and total bytes sent and received.			

FIDENTIAL

C 0 0

Other Services and Protocols

Other protocols supported in the base configuration are TCP Integrated Test System (Item 925-3300), Telnet (Item 925-3300), SSH (Item 925-3112), RADIUS (Item 925-3113) and TFTP (item 925-3138), FTP (Item 925-3300), WAP (Item 925-3144).

Table 28.				
Traffic	generation in	ו RFC	3511	tests

ID	HTTP	Binary Search	Connection Oriented	Connectionless
DOS Handling test	X	X	X	-
Illegal Traffic Handling test	X	X	X	-
IP Fragmentation test	X	-	X	X
IP Throughput test	-	X	-	X
Latency test	X	-	X	X
TCP Connection Capacity test	X	X	X	-
HTTP Max. Transaction Rate test	X	X	X	-
HTTP Transfer Rate test	X	-	X	-
HTTP Max. Connection Rate test	X	X	X	-

NTIA

ш О

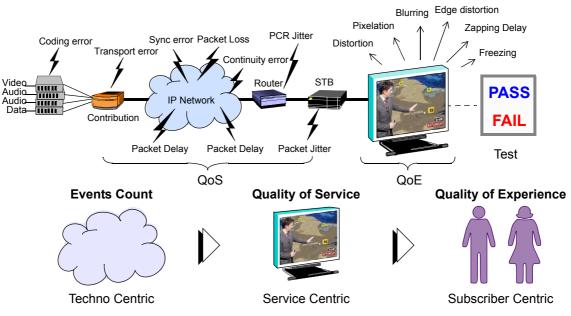
ш

2 0 0

7. IP NETWORK IMPAIRMENTS GENERATION

Network Impairments Generation

Application traffic it is always subject to a series of disturbances that degrade it. These disturbances often result from congestion-related phenomena.


The Integrated Test System includes ALBEDO Net.Storm. This device can generate disturbances in the IP / Ethernet layer at speeds of up to 1 Gbit/s over electrical and optical interfaces. Among the disturbances supported include:

- Constant delay, variable from uniform distribution, exponential distribution variable, delay associated with a shaping filter (shaping). The equipment can be adjusted to force the order of the frames or to vary according to the programmed delay statistics
- Deterministic packet loss (single event, variable burst length), random loss with a configurable rate, based on a Gilbert-Elliot model of two states. Also supports the shaping filter emulation (policing).
- Packet error rate deterministic or random with configurable
- Duplication at a deterministic or random rate defined by user

Another important feature is the ability Net.Storm set filters so that the perturbations are only applied to some of the traffic or even apply different rates to different fractions of disruption of traffic. Filters can be based on MAC addresses, IP addresses, protocol, DSCP, VLAN or port TCP / UDP.

Simulation of actual networks conditions

NetStorm generates those perturbances typical of IP and Carrier Ethernet to test applications, devices and protocols that should be tolerant with packet delay, jitter, loss, duplication, reordering, error and bandwidth variations.

Figure 8. Disruptions can occur anywhere on the network and determine the quality of the network service (QoS) that affect the experienced quality (QoE).

T I A

z

ш

ш

z o

O

The diversity of underlying technologies, and the adaptive behavior of applications requires more sophisticated testing technologies. NetStorm facilitates the verification of new applications, services and nodes through emulation of the real nature of IP networks. NetStorm enables engineers to model and modify arbitrary performance dynamics including packet delay, jitter, bandwidth limitations, congestion, packet loss, errors and duplication on live IP packets.

The degradation will be used to test the response of the services and also terminals using a signal that can be manipulated its delay, jitter, packet loss and other events. The effects of degradation is measured later and its effects will be measurable in the quality metrics used for this purpose as TR 1001 209, Video MOS, MDI and other.

Figure 9. ALBEDO Net.Storm is an independent and connectable to any point in the network with Ethernet interface. It comes in two formats, carrier-class rack as a hand-held battery-operate.

Conformity procedures

The process followed to accept a device (DUT) or system (SUT), or solve a problem of implementation has always been an important task, but when the new solution is based on the IP protocol formal verification of the solution becomes essential.

IP networks are ubiquitous, heterogeneous, and are now capable of delivering any type of traffic quality IP connections can vary in terms of bandwidth, latency, error rate and loss rates, and these results are usually asymmetric (up / downstream). Moreover, the dynamics of QoS can vary widely, due to congestion at peak times, and routing failures.

QoS requirements

Applications must make a more intelligent use of available network resources just as the proper conduct of the DUT / SUT can not be defined in simple deterministic and adaptive protocols that can interact in a way that is not easily detectable or predictable.

Net.Storm

NetStorm solution addresses this growing diversity of the network and to emulate real traffic conditions and thus to test nodes, protocols and terminals used in the new IP applications. NetStorm is largely independent of all systems and nodes. It is also effective and very accurate since the disturbances generated are based on hardware so it has full capacity to emulate any system Ethernet / IP and common network generate effects such as packet loss, duplication, delay, congestion, packet errors and bandwidth limitations.

TIAL

z

ш

ONFID

O

It is designed to provide sufficient capacity and performance play a wide range of network behavior up to 1 Gbps with accuracy rates always better than 1 ms. When operating at the Ethernet layer NetStorm can emulate the critical features from end to end performance imposed by the core routers and switches support for any underlying network.

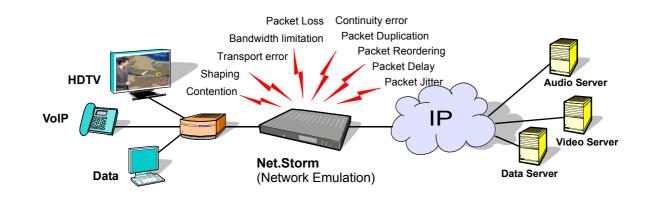


Figure 10. ALBEDO Net.Storm is the selected network impairments generator that allows to Implement the network

Hardware Performance

NetStorm is inserted between two Ethernet segments pass-thru mode, while in bi packet transfer. The configuration of the emulation can be set independently for 16 separate streams that can be filtered by several criteria including MAC, IP, TCP / UDP or user of the mask.

The result is a realistic simulation and controlled 100% of those obtained under real conditions WAN networks that have been detected in living. The same conditions are capable of being reproduced in order to observe the behavior of applications such as VoIP, IPTV, VoD, these nodes we gateways, routers and set top boxes, and link protocols such as SIP, MEGACO, H.323, and criticism and access networks.

(Find out more info in ALBEDO.Net.Storm.pdf)

ΤΙΑ

z

ш

_ _

z 0

ပ

8. TESTING AT THE GPON ACCESS NETWORK

When quality degrades until certain level and testing results tell that the Contribution, Transport and CPE network are in good shape then is the moment to verify if the FTTH access network is the cause of the problems. After the making an analysis of the network and users' computers come to the conclusion that the problem is in GPON access network.

The analysis of the FTTH network is made by means of GPON tester capable to be connected at any point of the access network supporting testing suites to verify elements such as ONT, OLT and Splitters and, in addition, capable to drop and send the user Triple Play traffic to be ana lysed including VoIP, IPTV and HSI.

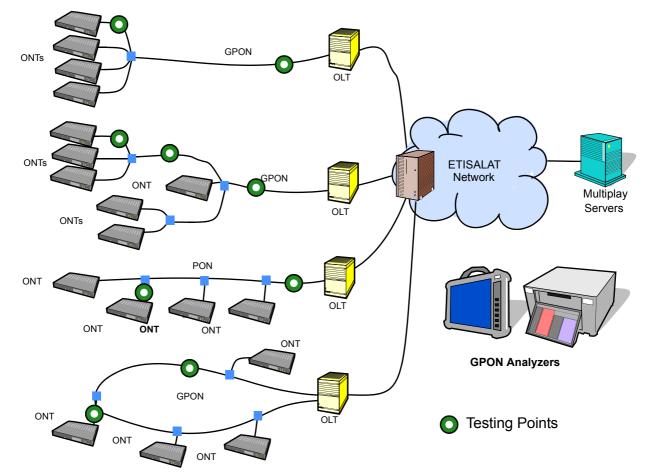


Figure 11. Any GPON topologies that could be used by ETISALAT can be analysed with GPON 4000.

Some of the functionalities of the GPON 4000 are explained herein below.

Real time user traffic extraction

GPON analyzer extracts decrypted user traffic in real time and at Ethernet layer. This traffic is made available at the 10/100/1000BaseT interface for its monitoring and upper layer analysis by external network analyzing tools and/or other application tools. Its hardware decoder fully supports AES automatic decryption combined with FEC encoding

T I A

z

ш

O N F I

O

Service regeneration and QoS Evaluation

GPON analyzer can regenerate services established over a PON network. i.e. Multicast video can be sniffed & reassembled in real time and watched on GPON analyzer screen. This feature is perfect to evaluate QoS and QoE of configured services over a PON.

Problems in PON and GPON networks

With the aim of reducing the ONTs price it is important that any OLT is capable to interact with any ONT regardless its manufacturer. However, GPON has a number of intrinsic characteristics that could make difficult the interoperability among manufacturers:

- Commercial implementations from earlier versions of the standard.
- · Problems during the activation process.
- · Misinterpretation of the standard.
- OMCI, a very broad standard.
- · Heterogeneity among operators.

Furthermore, the structure of a PON network is a fiber that is divided over using optical power dividers or splitters. At this point it appears the concept of *degree of splitting*" defined as the number of divisions that suffers the fiber to reach an ONT. The degree of splitting indicates that the percentage of optical power arriving to an ONT. Attenuation in a GPON circuit can be very high due to the sum of fibre splitting, connectorization (Insertion loss), fusion splice, and distance in the fiber, and thus, some of the network active elements operate under stress conditions.

All these factors imply a great challenge in the deployment of GPON networks.

Transparent analysis and Capture

The GPON 4000 transparently analyze traffic within a FTTH network. Moreover, its automatic calibration and built-in touch screen into a high performance chassis, makes it possible with just one click to have a full capture of GPON network traffic.

The capture can be very long (e.g. 30 minutes) and exportable to be used out of the GPON equipment.

Network analysis and evaluation

The analysis software interprets the captured data and translates it into a graphical and categorized format that can be easily used for in-depth analysis of GPON protocol compliance, interoperability evaluation, bandwidth assignments and field deployment troubleshooting.

T I A

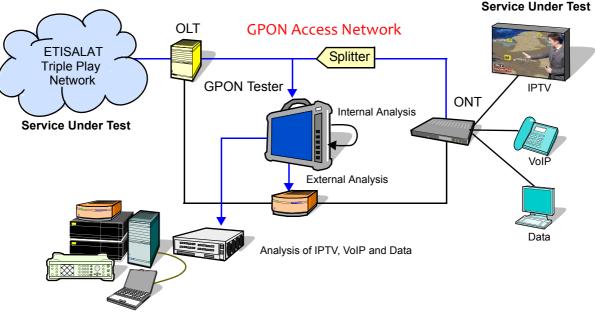
z

ш

_ _

z 0

O


Applications

Interoperability is a significant requirement of the industry to gain confidence on the of Gigabit-capable Passive Optical Networks (GPON). Moreover, lack of maturity of this technology has moved the ITU-T focus on verifying correct deployments at the OMCI¹ Implementers' guide. As often happens with standards, OMCI was written with a lot of compromises and facilities, then when it come to interoperability, issues rise.

In other words, GPON analyzer is a tool for engineers planning the deployment of FTTH networks. This instrument will help them not only to run Interoperability test, but also for product certification, diagnose and troubleshooting. It is the best tool in market to verify TR-156 / TR-167 compliance of GPON networks.

World leader operators and manufacturers all over the world are already using GPON analyzer to perform:

- Verification of
- Interoperability Test between different ONT / OLT vendors
- FTTH Deployment
- Maintenance and Troubleshooting
- Assessment of compliance of OLT / ONU / ONT
- Analysis of GPON protocols from the Ethernet

ETISALAT Integrated Test System

Figure 12. Albedo GPON analyser can capture and analyse traffic in real time and can drop data for further analysis with other applications and instruments.

ALBEDO

^{1.} OMCI: Optical Network Termination (ONT) Management and Control Interface

9. PHYSICAL MEDIA DISTURBANCES (OPTIONAL)

This test is intended to execute acceptance test of CPE equipment such as routers and STB connected by means of Wi-Fi, PLC or Coax under physical media perturbances.

Test Requirements

In an ideal situation the Integrated System Test should be performed in stressful conditions coaxial Media, PLC and WiFi to be held in Faraday cages in the Test System using attenuators and RF generators.

In ALBEDO are convinced that it is sufficient with only one disturbance generator that can be used for any of the physical transmission media including Coaxial, PLC, UTP, or Wireless. The only difference is the fact that the disturbance should to be conducted or radiated (depending on the media), and therefore only involves using a cable or antenna, connectors and adapters for each medium of transmission.

Figure 13. Signal Generator to 6GHz is the source of problems sorting and Faraday cage bag format for entering the DUT. This system comes complete with accessories such as antennas, couplers and cables that allow for verification testing and tolerance in a totally controlled environment.

> We understand the difficulty of having all these facilities are highly specialized as available only to specialized laboratories and disposal. For the Integrated Test System to realize a subset of the tests proposed (see Annex 2).

> The equipment under test is placed in a suitcase as the CMW-Z10/-Z11 which has a useful range up to 6 GHz frequency that exceeds the range needed to generate interferences in the bands of GSM, UMTS, DVB, WiFi, WLAN, Bluetooth ® and GPS interference are to be tested. The suitcase has a Double N interface where you connect the generator and antenna interference generation. The DUT, such as a router, is installed inside the bag and passes through a wall is connected to the network to remain in service.

> In all cases the engineer selects the test to run, program the level of interference with the proper parameters and observes the consequences of disturbances in the levels of quality (TS2, IP, MOS, MDI, etc.) of the signal with digital information.

T I A

FIDEN

2 0 0

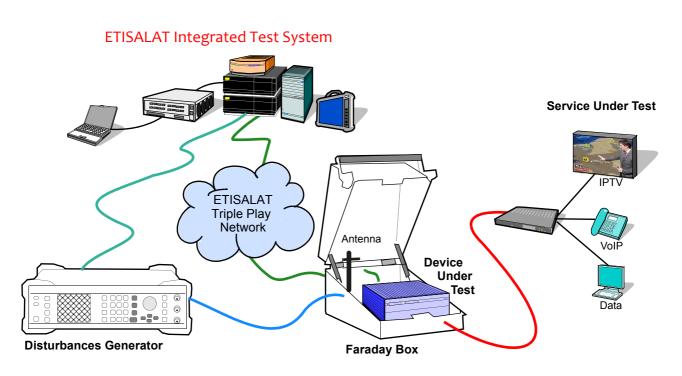


Figura 14. An interfering signal in the frequency band in which you want to create disturbance in the physical environment. The equipment being measured (DUT) is inserted into the suitcase of Faraday. If it were a router, as the case illustrated in Figure, first access network to the test system and on the other client computers using the appropriate physical environment Coax, UTP or PLC. In the case of WiFi transmitter and receiver must be placed inside the Faraday Box.

Automatic control

In the case of disturbances of the physical medium of transmission, the test system must be prepared to grow by incorporating automatic control of new elements involved in this function that have GPIB interface for remote control, and has conventional Ethernet interfaces (TCP / IP) and USB.

Testing of PLC system

In these trials will be necessary the following scenarios:

- Without disturbance
- Interference between PLC produced on other frequencies in the same medium (frequency narrowband PLC)
- Interference between PLC supported by the team due to other signals that share the medium (frequency narrowband PLC, PLC frequency bandwidth used by other teams)

WiFi Testing Systems

In these trials will be necessary to teste the following scenarios:

- Without disturbance.
- Disturbances in the air due to obstacles between transmitter and receiver.

ALBEDO

NTIAL

NFIDE

0 0

 Disturbances in the air environment due to radiated signals at frequencies of GSM transmission standard, WiFi, DVB-T and other sources of interference to 6GHz

The air attenuation will be minimal, if receiver and transmitter are in front and avoid radiated and conducted electromagnetic interference.

Tests for Coaxial transmission systems

In these trials will be necessary to teste the following scenarios:

- Without disturbance.
- Disturbances in the middle coaxial produced on other signals that share the medium (digital terrestrial television frequencies).
- Disturbances in the middle coaxial supported by the team due to other signals, they share the medium (digital terrestrial television frequencies).

There is no need any verification disturbing other differences from that of digital terrestrial television, because such shocks are checked in the harmonized standard EN 301 489-01 V1.6.1.

10. CONTROL, MANAGEMENT AND AUTOMATION (OPTIONAL)

The Integrated Test System provides automation capabilities based on Ixia's Composer software (item 931-3003). Once developed a test for the Integrated System Test Composer allows it to be repeated as many times as desired with minimal human intervention.

Composer is an interactive development environment that allows users to develop scripts using multiple devices (including himself DUT / SUT) and measuring equipment simultaneously. Users can develop their own tests by capturing session, using available procedures or by entering commands directly in the script.

Another key feature of Composer is the ability to analyze logs generated by the DUT and execute scripts to proactively depending on the content of these logs.

Table 29.	
Key features of Ixia	Composer

Test IDE	Provides a working environment that simplifies the test development process.
Multi-vendor test authoring	Provides a unified scripting environment that coordinates and synchronizes test steps. Composer tracks the commands executed in the different test tools and DUTs and replays them as a script in the desired order.
Open architecture framework	An open architecture framework that can accept command plug-ins developed by other vendors. Plug-ins can be easily added to the framework to extend and enhance the user's ability to control and script interactions with other test vendors' tools.
Comprehensive Ixia applica- tion support	Complete coverage of the Ixia portfolio of products including IxNetwork, IxLoad, IxAutomate, IxChar- iot and many more. Test Composer has the broadest list of supported applications and the deepest level of command support of any product in the industry.
Live interactive capture/replay	Create a test by simply entering commands in one or more live sessions connected directly to the DUT and/or test tool, then craft the captured sequence into an automated test or procedure that can be used by many tests.
Passive DUT Monitoring	Configure live sessions to passively monitor session logs and consoles for various messages, such as errors or warnings, and then take proactive steps to flag the errors and optionally recover from the errors. Supported sessions include SNMP and SYSLOG among others.
Customizable Report Genera- tion	Automatically generate test reports as part of the test execution. The report can include any number of tables, graphs, images and text. A table of contents is automatically generated based on the content added by the test. The report content and format can be tailored dynamically by the test in real time.
Built-in CSV file analyzer	Easily read and analyze CSV files as part of the automated test. Many test tools produce output in CSV formats. The CSV Analyzer can read these files in, extract relevant data, and even aggregate the data for analysis. Then use the data to determine success or failure of the test automatically.
Shared Test Resources	Create a variety of shared resources like procedures and device profiles that allow the test team to leverage their work among the different test cases and make those test cases more portable.
Full-featured debugger	A debugging environment that shortens the time between creating and debugging a test. The debug- ger has a full set of features, including breakpoints, execution progress indicators, variable watches, global and session logging streams for diagnosing failures within the test.
Simplified test development process	A unique combination of capturing live interactions with the devices and test tools plus the full flexibil- ity of a script editor and debugger.

NTIAL

FIDE

C 0

Annex A. SUPPLIER STATEMENT OF COMPLIANCE

Below is a summary of the status of compliance of various conditions specified by the customer for the Integrated System Test specified in the preceding sections.

GPON Analyzer.

Table 30.

GPON network analyzer as per the attached compliance sheet and specification and general requirements.

ID	Description	Country Origin Make
1	GPON network analyzer	Spain (European Union)

Voice Services

Table of compliance.

 Table 31.

 Performance Monitoring of various VoIP and FAX protocols and voice codec.

ID	Description	Compliance
1	H.323	YES
2	MGCP	YES
3	H.248 (MEGACO)	YES
4	SIP	YES
5	Т.38	YES
6	void	n.a.
7	void	n.a.
8	G.726	YES
9	G.728	YES
10	G.729	YES
11	G.722 HD	YES
12	G.711	YES
13	Clear Mode	YES

Table 32.

Monitor and report all voice related performance parameters including service availability.

ID	Description	Compliance
14	No dial tone	YES
15	Busy	YES
16	Unreachable called party	YES
17	Sound loss	YES
18	DTMF transmission issue	YES
19	One way speech	YES
20	Dropped call	YES
21	Clipping	YES
22	Noise level	YES

NTIAL

ш ΕID z 0 U

Monitor and report all voice related performance parameters including service availability.

23	End to end delay	YES
24	One way delay	YES
25	Dial tone delay	YES
26	Capture and analyze signalling and speech (RTP) path during voice calls	YES

IPTV Service

Table of compliance.

 Table 33.

 Performance Monitoring of various IPTV services including Multicast and Unicast TV (SDTV, HDTV, MPEG2, MPEG4, and video on demand-VoD) Monitor and report all the performance related parameters including Service availability.

ID	Description	Compliance
27	IGMP v1 / v2 / v3	YES
28	MPEG frames	YES
29	IGMP performance	YES
30	IGMP / MLD Querier	YES
31	MLD v1 v2	YES
32	Error Screens	YES
33	Black Out	YES
34	Frozen image	YES
35	Macro Blocks	YES
36	No sound	YES
37	Concurrently monitor multiple TV channels and provide alarm / report for service degradation	YES

Table 34.

Monitor and report Picture quality.

ID	Description	Compliance
38	Video MOS	YES
39	Blockiness	YES
40	Blur	YES
41	Jerkiness	YES
42	Video error screen capture	YES
43	Frame loss rate (FLR)	YES
44	Tiling	YES
45	Color Pixelation	YES
46	Slice Losses	YES
47	Channel Overlap	YES

Table 35.

Monitor and report Audio quality.

ID	Description	Compliance
48	Audio MOS	YES

Table 32.

Table 35.

Monitor and report Audio quality.

49	Bandwidth	YES
50	Loudness YES	
51	Saturation	YES
52	Audio Capture with video	YES
53	Fidelity	YES
54	Frequency response	YES
55	Signal to noise ratio	YES
56	Total Harmonic distortion (THD)	YES

Table 36.Monitor and report VoD analysis

ID	Description	Compliance
57	Channel changing and menu browsing	YES
58	Channel Change Time	YES
59	VoD access time	YES
60	EPG access time	YES

Table 37.

Monitor and report the Network analysis during testing off IPTV service.

ID	Description Cc			
61	MPEG-TS based on ETSI TR 101.290, ETSI TR 102.034	YES		
62	MDI	YES		
63	Backbones and service platform response time	YES		
64	Packet loss	YES		
65	Gap loss	YES		
66	Jitter	YES		
67	Packet Discard Rate (PDR)	YES		
68	Connection Success Rate (CSR)	YES		
69	Out of order Packets	YES		
70	IGMP Join Leave Latency YES			

HSI Service

Table of compliance.

Table 38.

Performance Monitoring for service availability of PPP sessions.

ID	Description Compl			
71	PPP successful session status	YES		
72	Failed sessions with reason for failure	YES		
73	NS resolution failure YES			
74	TCP connect failure YES			
75	Servers and applications errors	YES		
76	Authentication errors	YES		
77	Time out YES			

ALBEDO

Table 38.

70	Integrity Choole	YES
78		
79	Web surfing	YES
80	HTTPS	YES
81	FTP	YES
82	Streaming media	YES
83	HTTP file download performance	YES
84	FTP file upload and download performance	YES
85	Messaging services with SMTP	YES
86	POP3	YES
87	IMAP4	YES
88	Time to send and receive emails	YES
89	Message transit time	YES
90	Measurement of the impact of firewall and antivirus for receiving messages	YES
91	DNS	YES
92	Telnet	YES

Performance Monitoring for service availability of PPP sessions.

Backbone testing

Table of compliance. . .

Table 39.Backbone testing Analysis.

ID	Description	Compliance
93	TCP	YES
94	UDP	YES
95	ICMP	YES
96	Hops	YES
97	Delay	YES
98	Packet Loss	YES
99	Jitter	YES
100	DNS Analysis	YES
101	Capability to do RFC-based benchmarking methodologies for Layer2 and Layer3	YES

Table 40.Testing of Network Traffic Access.

ID	Description	Compliance
102	Spanning Tree	YES
103	VLAN	YES
104	DHCP	YES
105	QoS	YES
106	IPv4/IPv6	YES
107	Routing	YES
108	IEEE 802.1ad (Qin Q) tagging	YES
109	IPsec YES	

ALBEDO Telecom - B6523022 - Ramón Turró, 100 - Barcelona - 08005 - www.telecom.albedo.biz

Table 40.Testing of Network Traffic Access.

110	PPPoE	YES		
111	IGMP	YES		
112	SSL	YES		
113	IPSec	YES		
114	IPv6 functionalities YES			
115	IPv6 support for the 1Gig / 10 Gig interfaces	YES		
116	DHCPv6 YES			
117	Multicast for IPv6	YES		
118	MLD (Multicast Listener Discovery Protocol) YES			
119	PIMv6 YES			

Table 41.Monitor and Report.

ID	Description	Compliance
120	Packets in order	YES
121	Dropped frames	YES
122	re-ordered frames	YES
123	late and duplicate frames	YES
124	In and Out-of-Sequence frames	YES
125	25 Latency modes like FIFO (bit forwarding devices per RFC 1242) YES LILO (forwarding delay per RFC 4689) and LIFO (store and for- ward devices per RFC1242)	
126	Latency, avrg, min, max, and short term avg, first/last frame arrival timestamp	YES
127	TCP/UDP checksum	YES
128	Frame CRC YES	
129	Embedded CRC	YES
130	PRBS bit errors YES	
131	FCS Errors YES	
132	IP checksum	YES
133	Total, Average, Minimum and Maximum Jitter YES	
134	Total, Average, Minimum and Maximum Interarrival time YES	

NTIAL

ш

F D

z o

O

Annex B. ALBEDO TELECOM SIP/VOIP TEST SUITE² (OPTIONAL)

This is one of the options for extension of the Triple Play Monitoring System. This suite lets you run the tests for approval and acceptance of VoIP terminals. The certification protocol described in this document enables testing of VoIP user equipment such as IP telephones or ATAs. The currently defined tests can be classified in the following groups (see Table 42.):.

Table 42. Group of the test suite.

Class	Туре	Purpose
IP - VOIP -General	Conformance	They check basic features of the devices under test (DUTs) such as the capability of remote management through a web interface or the keypad directly attached to the device.
IP - General	Conformance	This family includes tests to verify features related with IP but not specifically with IP tele- phony. Support of DHCP or DNS protocols are examples.
IP - VOIP - SIP	Conformance	These tests check that the DUT is able to generate SIP signaling messages with a correct syntax and if they can decode and understand SIP messages received from remote entities.
IP - VOIP - QOS	Performance	This family checks that the DUT offer good voice quality under different conditions, including different types of network degradations.

he QOS test family is general enough to allow verification of any telephone and not only VoIP telephones. Specifically, the Test System enables QoS verification and testing of POTS, ISDN or cell telephones under some not restricting conditions. On the other hand, it has to be noted that the Test System is prepared (or at least it can be configured) to enable testing of VoIP network equipment such as voice gateways proxies and other devices. However, in this case, it would be necessary to modify the test suite. Something similar can be said about H.323 VoIP devices. Either the Test System subsystems are independent of the actual VoIP signalling protocol or they support both SIP and H.323 signalling. The test suite, however, is suited only for SIP devices. It would be necessary to define from scratch a new IP- VOIP - H323 family for H.323 devices.

The following table (see Table 43.) reproduces de contents of the test suite along with a short summary with the purpose of every individual test

Table	e 43	-
SIP/VoIP	test	suite.

Number	Test ID	Class	Name
0001	8348-01	IP - VOIP - General	Management with keypad
0002	8432-01	IP - VOIP - General	Web management
0003	8433-01	IP - VOIP - General	Remote management
0004	8351-01	IP - General	Default settings
0005	8352-01	IP - General	Dynamic IP assignment
0006	11430-01	IP - General	DNS communication with dynamic IP
0007	11397-01	IP - General	DNS communication with dynamic IP (primary DNS server fails)
0008	11431-01	IP - General	DNS communication with dynamic IP (both DNS servers fail)
0009	11433-01	IP - General	DNS communication with static IP
0010	11432-01	IP - General	DNS communication with static IP (primary DNS server fails)
0011	11434-01	IP - General	DNS communication with static IP (both DNS servers fail)
0012	11345-01	IP - General	Port assignment procedure
0013	8357-01	IP - VOIP - SIP	REGISTER method (register without authentication)

2. ALBEDO suite to test the acceptance and compliance of VoIP terminal.

ALBEDO

Table 43.SIP/VoIP test suite.

Number	Test ID	Class	Name
0014	10719-01	IP - VOIP - SIP	REGISTER method (register with authentication)
0015	8359-01	IP - VOIP - SIP	REGISTER method (unregister without authentication)
0016	10720-01	IP - VOIP - SIP	REGISTER method (unregister with authentication)
0017	11346-01	IP - VOIP - SIP	INVITE method (successful outgoing call)
0018	11347-01	IP - VOIP - SIP	INVITE method (successful incoming call)
0019	11488-01	IP - VOIP - SIP	INVITE method (outgoing call to a busy line)
0020	11489-01	IP - VOIP - SIP	INVITE method (incoming call to a busy line)
0021	11490-01	IP - VOIP - SIP	INVITE method (session refresh)
0022	11348-01	IP - VOIP - SIP	INVITE method (outgoing call hold)
0023	11349-01	IP - VOIP - SIP	INVITE method (line pickup after hold)
0024	11491-01	IP - VOIP - SIP	INVITE method (incoming call hod)
0025	11350-01	IP - VOIP - SIP	INVITE method (3 parties call, join calls)
0026	11492-01	IP - VOIP - SIP	INVITE method (3 parties call, join outgoing call)
0027	-	IP - VOIP - SIP	INVITE method (proxy authentication)
0028	11351-01	IP - VOIP - SIP	BYE method (internal phone ends call)
0029	11493-01	IP - VOIP - SIP	BYE method (external phone ends call)
0030	11494-01	IP - VOIP - SIP	CANCEL method (incoming call)
0031	11668-01	IP - VOIP - SIP	CANCEL method (outgoing call)
0032	11353-01	IP - VOIP - SIP	REFER method (blind call transfer)
0033	11352-01	IP - VOIP - SIP	REFER method (call transfer)
0034	11495-01	IP - VOIP - SIP	URI composition depending on register server port
DELETED	8378-01	IP - VOIP - SIP	RTP with codec G.729
DELETED	8379-01	IP - VOIP - SIP	RTP with codec G.711A
0035	8380-01	IP - VOIP - SIP	183 Session Progress message reception without SDP
0036	8381-01	IP - VOIP - SIP	183 Session Progress message reception with SDP
0037	8382-01	IP - VOIP - SIP	180 Session Progress message reception without SDP
0038	8383-01	IP - VOIP - SIP	180 Session Progress message reception with SDP
0039	11704-01	IP - VOIP - QOS	Clarity measurements introducing no perturbation
0040	11705-01	IP - VOIP - QOS	Clarity measurements introducing perturbations
0041	11706-01	IP - VOIP - QOS	Clarity measurements introducing no perturbation
0042	15766-01	IP - VOIP - QOS	Delay measurements introducing no perturbation
0043	15767-01	IP - VOIP - QOS	DMTF tone measurement introducing no perturbation
0044	15768-01	IP - VOIP - QOS	Signal loss introducing no perturbation
0045	12397-01	IP - VOIP - QOS	Clarity measurements introducing perturbations
0046	15769-01	IP - VOIP - QOS	Delay measurements introducing perturbations
0047	15770-01	IP - VOIP - QOS	DMTF tone measurements introducing perturbations
0048	15771-01	IP - VOIP - QOS	Signal loss introducing perturbations

Varios dispositivos de montaje en rack permitirán emular diferentes sistemas de red, cada uno con un propósito específico:

The Test System system has been specifically designed to perform the mentioned tests but it was also taken into account several possible future extensions like for example the attachment of a custom access network (like for example DSL or WiFi), or video generation/analysis subsystem.

NTIAL

NFIDE

0 0

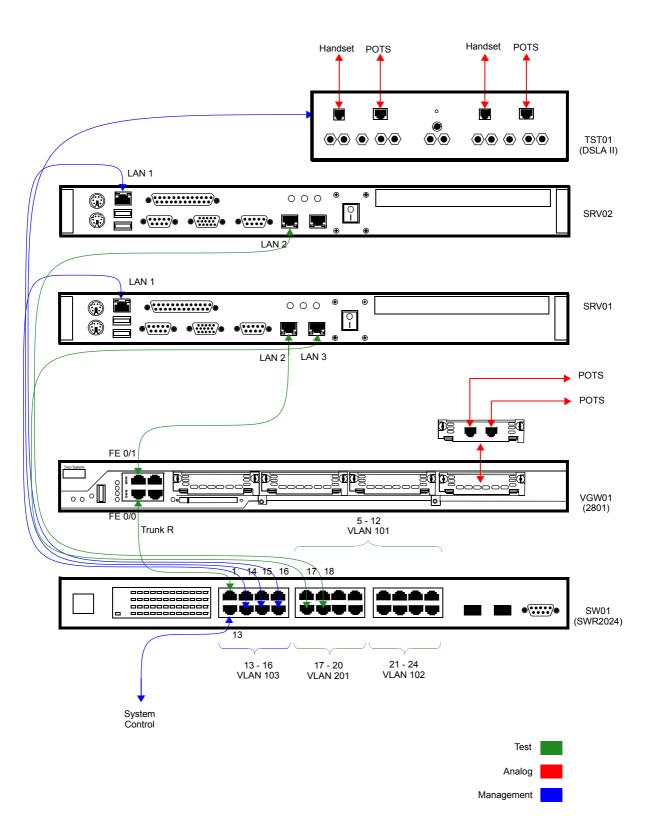


Figure 15. ALBEDO Integrated VoIP Lab to execute conformity and acceptance test procedures for VoIP terminals, PBX and systems.

ALBEDO Next Carrier Ethernet - Sync Ethernet - IPTV - VoIP - QoS - SLA - Consulting - Testers - Laboratories - Monitoring Systems Professional Telecom Solutions

TIAL

z

ш

Г П

z o

O

The certification and acceptance Test System is made up by various rack-mountable devices. These devices emulate different network systems. There are three differentiated subsystems in the certification Test System, each with an specific purpose:

- Network Services Simulation Subsystem (NSSS): Implements all the services commonly found in IP networks such as domain name service, address assignation, routing and others. At the same time, it provides access ports to test devices and other test Test System subsystems.
- Network Impairment Emulation Subsystem (NIES): It generates controlled network impairments such as packet loss, delay, packet reordering and others. This subsystem is based in a software installed in a dedicated server.
- Traffic Generation and Analysis Subsystem (TGAS): Devices attached to this subsystem are in charge of generating voice test signals, either as analogue audio or packetized media, and analyses the media signal. The most important measurement carried out by this subsystem is the clarity or MOS, that rates the quality of the voice signal with a number between 1 (for bad) and 5 (for good).

Although the testing Test System emulates most of the features and defects of most public or private IP networks, it does not pretend to be an exact reproduction of a service provider IP network. Switching and transmission equipment that are commonly included in the provider network have been replaced by simpler devices like the ones that are usually included in enterprise networks. These equipment include most of the functionality also offered by service provider equipment but they operate at lower bit rates. Including carrier class devices to the Test System would make it more expensive without adding new really important features and in any case these elements would always be used under their possibilities.

Physical interfaces that probably would made up the provider network will be replaced by simple Ethernet interfaces as well. The Test System network is an electrical Ethernet network operating at 100 Mb/s. However, connection of external devices is extended to 1 Gb/s Ethernet both over electrical or optical interfaces.

(More info: ANNEX.VoIP.Test.pdf)

Annex C. TRAINING, SUPPORT AND MAINTENANCE

- 1. ALBEDO Telecom will carry out the installation, configuration and complete overhaul of the solution in the Operator Facility.
- 2. ALBEDO Telecom will carry out personnel training in technology Operator and Test System use.
- 3. Telecom ALBEDO funded for a year, without charge, all queries on the system after delivery.
- 4. ALBEDO Telecom guarantees the system for one year free of charge.

(More info: ANNEX.TRIPLE.PLAY.BOOK.ETISALAT.pdf)

TIAL

D E N

ш

z o

O

Annex D. README

List of Documents for the ETISALAT RFP GPON Network Analyzer.

DOCUMENTS FOR THE PROPOSAL

- 1.MAIN.IMTS.GPON.ETISALAT.pdf (central document)
- 2.MAIN.COMPLIANCE.ETISALAT.pdf
- 3.MAIN.GPON.QUOTATION.ETISALAT.pdf

BROCHURES

- 4.BROCHURE.ALBEDO.Net.Storm.pdf
- 5.BROCHURE.IXIA.ixautomate_multicast.pdf
- 6.BROCHURE.IXIA.ixautomate_rfc_3511.pdf
- 7.BROCHURE.IXIA.ixautomate_rfc_benchmarking.pdf
- 8.BROCHURE.IXIA.ixload_overview.pdf
- 9.BROCHURE.IXIA.optixia_xm2.pdf
- 10.BROCHURE.IXIA.test_conductor_composer.pdf
- 11.BROCHURE.R&S.GENERADOR.SMB100A.pdf
- 12.BROCHURE.R&S.CMW-Z10.pdf
- 13.BROCHURE.MALDEN.DSLA.pdf
- 14.BROCHURE.GPON4000.pdf

ANNEX

- 15.ANNEX.VoIP.Lab.br.pdf
- 16.ANNEX.TRIPLE.PLAY.BOOK.ETISALAT.pdf
- 17.ANNEX.ABOUT.ALBEDO.pdf

CONTACT

Jose M Caballero jose.caballero@albedo.biz ALBEDO Telecom +34 637 410 299

ALBEDO Telecom

ALBEDO Telecom designs, manufactures, and delivers solutions that enable Telecom organizations of all sizes to test, measure, troubleshoot, monitor, and migrate mission critical networks and multiplay applications.

On local segments and across distributed networks, ALBEDO enable Organizations, Installers, Operators, Service Providers and Suppliers to quickly check the health of Network Architectures, Service Agreements (SLA), IP Quality (QoS), or fix any issue.

Your Business Partner

Results. ALBEDO Telecom helps the industry to make the most of the investment on infrastructure.

Expertise. ALBEDO Telecom engineers and consultants provide industry leading knowledge in IPTV, VoIP, Carrier-Ethernet, Sync-Ethernet, SDH, and WDM / OTN to address the unique needs of customers.

Integration. ALBEDO Telecom integrates disparate telecom technologies and applications, facilitating new business efficiencies.

Agility. ALBEDO Telecom increases the ability of customers to respond quickly to new market opportunities and requirements.

Coverage. ALBEDO Telecom offers solutions that facilitates the migration and the roll-out to new architectures.

Ramón Turró, 100 - Barcelona - 08005 - Sp Chalfont St Peter - Bucks - SL9 9TR - UK www.telecom.albedo.biz

+ UNDERSTAND causes of telecom interoperability issues
 + EXPERIENCE the best quality in unified networking
 + ASSESS different hardware, firmware, and software solutions
 + LEARN from experts by means of professional services and consultancy