Carrier Ethernet Testing

About ALBEDO Telecom

ALBEDO Telecom offers a full range oftelecommunication products and services that help your organization make the most of your investment in telecoms

- Hand-held testers: E1, SDH, GbE, SyncE, IP, IPTV, VoIP, Datacom, Jitter, Wander
- Impairment Generator: Carrier Ethernet and IP
- Acceptance Labs: IPTV, VoIP, ISDN, POTS
- Distributed Test System: SLA, QoS, Bandwidth profile
- Professional Training: xDSL, PON, Carrier Ethernet, MPLS, SDH, Synchronization, IPTV, VoIP
- Consultancy / Integration: IPTV, VoIP

Wirespeed Gigabit performance fiber connectivity enabled through four combination interfaces

Layer 2 Services

- IEEE 802.1Q static VLAN (512)
- IEEE 802.1p Class of Service (CoS)
- IEEE 802.1 Q-in-Q
- IGMP v1, v2 snooping support
- Ingress rate limit in 1 Kbit/s increments (CIR)
- Weighted round robin (WRR) queue technology (QoS)

Layer 3 Services

- IGMP Querier
- Diffserv QoS
- Static routing
- ARP

Configuration

- Switch MAC address: 00:01:22:BC:08:73

Port	Autoconfiguration	ΜΤυ	VLAN	VLAN ID	IP	QoS
1 to 6 7 to 12	Auto 100BASE-T / HDX	1518 bytes	1 2	101 102	192.168.101.1 / 24 192.168.102.1 / 24	CIR (global) = 2 % n.a.
13 to 17		9000 bytes	3	103	192.168.103.1 / 24	if DSCP=46 then CIR=10 Mbit/s CBS=100 kB, strict priority
19 & 22	Auto	1522 bytes		Q-tag trunk		
20 & 24		1526 bytes	n.a.	Q-in-Q, P-VID 201	trunk	n.a.
21 & 23				Default (Admin.1)	n.a.	

The Structure of LAN Cabling

Common Twisted pair Varieties

EIA/TIA Cable Categories

Cat	Bandwidth	Common Application
1	-	Telephony, ISDN BRI
2	4 MHz	4 Mbit/s Token Ring
3	16 MHz	Telephony, 10BASE-T, 100BASE-T4 (four wires)
4	20 MHz	16 Mbit/s Token Ring
5	100 MHz	100BASE-T, 1000BASE-T (four wires)
5e	100 MHz	100BASE-T, 1000BASE-T (four wires)
6	250 MHz	1000BASE-T (four wires)

Category	Cat 6	Cat 5e	Cat 5
DC resistance (20°C, 100 m)(max)	9.5 Ω	9.5 Ω	9.5 Ω
DC resistance unbalance (max)	2 %	2 %	5 %
Mutual capacitance (100 m)(max)	5.6 nF	5.6 nF	5.6 nF
Worst case cable skew (100 m)	25 ns	22 ns	45 ns
Nominal velocity of propagation	73%	75%	70%
Loss (20/100/250 MHz)(100m)(max)	8/18/30 dB	9/20/33 dB	9/21/- dB
PSNEXT (20/100/250 MHz)(100m)(min)	65/57/48 dB	58/47/41 dB	50/39/- dB

Testing Cabling in LANs

Pin/Pair Assignment Standards

There are two wiring standards, T-568A and T-568B. So far this conference, the difference is the color used by pair 2 and pair 3. In our model we are using the **T-568A**

The two standards should no be used in the same cable.

Common Cabling Faults

ALBEDO

Cabling test Hands-on

- Connecting to a Line using the RJ45 Connector Ports C only
- General Config: Select Endpoint Mode
- Set Up: Test Sel cable
- (Num Port, in General Config, changes automatically to P1 C)
- Start the Cable test
- Results: select Cable
- Choose the pair (Pair 1, Pair 2, Pair 3 or Pair 4) you want to display the results.

Ligth Propagation in Optical Fibers

Modal Dispersion

Fiber type	Modal Bandwidth	1000BASE-SX	10GBASE-S
62.5 μs MMF	160 MHz*km	2 ~220 m	2 ~ 26 m
62.5 μs MMF	200 MHz*km	2 ~275 m	2 ~ 33 m
50 μs MMF	400 MHz*km	2 ~500 m	2 ~ 66 m
50 μs MMF	500 MHz*km	2 ~550 m	2 ~ 82 m

Loss and Reach Limitations of Optical Fibers

11.0 dB

40 km

10 µs SMF / 1550 nm

NLP Auto-negotiation Pulses

0010011001010000 - 0x2650

Electrical and Optical Autonegotiation

Auto-negotiation Base Page 10/100/1000BaseT

Auto-Negotiation Base Page 1000BASE-X

Testing Auto-negotiation

Mind that:

- 1000BASE-T must always interchange Autonegotiation page
- If an interface does not have Autonegotiation then it can't have 1000BASE-T

Autonegociation tests: FDX / HDX / Bit rate

Test 1

- Gen Config menu: Set Port C, Autonegociation On
- Gen Config menu: Set Port D Autonegociation On, Loop back On
- 3. Connect Port C and Port D to VLAN 3
- **4.** Setup menu: Taffic test, Setup P1: Constant, Percent: 100%
- 5. Start traffic test

Results: *Results menu*: Both ports are connected at 1000 Mbit/s and Traffic goes OK. No errors

Test 2

- 1. Gen Config menu: Set Port C, Autonegociation Off (Max rate is 100 Mbit/s)
- 2. Gen Config menu: Set Port D Autonegociation On, Loop back On
- 3. Connect Port C and Port D to VLAN 3
- 4. Setup menu: Taffic test, Setup P1: Constant, Percent: 10%
- 5. Start traffic test

Results: Port 1: connected HDX 100Mbit/s Port 2 C: Line rate 1000 Mbit/s / Bandwidth only 1%

Autonegocitation mismatch

Test 3

- 1. Gen Config menu: Set Port C, Auto Off, FDX
- 2. Gen Config menu: Set Port D Autonegociation On, Loop back On
- 3. Connect to VLAN 2 which is HDX
- **4.** *Setup menu*: Taffic test, *Setup P1*: Constant, *Percent:* 10%

Results: *Results menu*: Both ports are connected at 1000 Mbit/s and Traffic goes OK. No errors

Test 4 / Use two VLAN

- **1.** *Gen Config menu*: Set Port C, Auto Off, FDX
- 2. Gen Config menu: Set Port D Autonegociation On, Loop back On
- 3. Connect C to VLAN2-HDX & D to VLAN3-FDX
- Setup menu: Taffic test, Setup P1: Constant, Rate: 41,6 Mbit/s

Results: Collisions in port D, when transmiting (15Mbit/s lost) and receiving (15Mbit/s lost) then only Rx = 10 Mbit/s are received

No collisions in Port D: Rx = 25 Mbit/s

Baby Giant Frames

Ethernet standard max. size is 1518 bytes, 1500 payload, 14 header 4 FCS. But longer frames do exist:

- Frames carrying Virtual LAN. Single Q-tagged is 1522 bytes double Q-tagged 1526 bytes.
- Frames carrying MPLS can be up to 1526 bytes.

Frames slightly larger than 1518 bytes are known as **Baby Giant** frames which generally are **standard**

Jumbo Frames

Jumbo Frames are often much longer than regular Ethernet frame size of 1518 bytes. Typical sizes are 4470, 9216, 9192, 9180, or 9176 bytes, they are **not standard** but **propietaries**.

Many switches and routers allow the configuration of Maximum Transport Unit (MTU) from the console but there are others that do not support them.

Routers, that operate at layer 3, allow the segmentation (see figure a) however Ethernet networks do not have segmentation/assembly feature and drop frames if they are larger than MTU

Therefore it is necessary to determine the MTU allowed in Ethernet networks and devices.

Determining the Max. frame Size

Test 5

- 1. Load Basic Traffic configuration (1000BASE-T / FDX / Port D=Loopback)
- 2. Gen Config: Port C & D, set max size > 9000
- 3. Set up P1 Profile Constant Frame size: User Size = 9500
- 4. Run test. Go to Results P1 / P2 and verify that there is not traffic
- 5. Set up P1 Profile Constant Frame size: User Size = 8500 and run the test again

Repeat the test in VLAN 1 or VLAN 2 where the MTU = 1518 bytes

Routing between VLANs

Test 6

- 1. Load VLAN routing configuration (1000BASE-T / FDX / Port D=Loopback)
- 2. VLAN, IP and MAC addreses according figure
- 3. Connect C to VLAN 1 and D to Port D
- 4. Run the test

<u>Attention</u>! Note that send data from C to D we are using the IP address (rather than MAC). However it is necessary to use the switch MAC address

Conclusion: VLANs allos the use of permanet IP addresses independently of the Physical Port

PortsTesting Isolation Between VLANs

Test 6

- 1. Load VLAN broadcast configuration (1000BASE-T / FDX / Port D=Loopback)
- 2. Port C is sending broadcast traffic using destination MAC = FFFFFFF
- 3. The switch flood the broadcast to all the ports of the same VLAN
- 4. No traffic in other ports external to the VLAN1

Testing Isolation Between VLANs in Trunk

Test 7

In this test we are going to use of Trunk ports therefore tags VLAN are required.

- 1. Load VLAN Trunk configuration
- 2. Port C is sending broadcast traffic throught VLAN 101
- 3. Since it is boradcast it is received at the trunk port with the VLAN tag 101

Note that in generation there were not tags but the switch inserts it before forwarding it to the Trunk. This is a remarkable difference with other ports that may be part of a VLAN but to do not have to fill up the tag

Testing Isolation Between VLANs in Trunk

Test 8

In this test we are going to use of Trunk ports therefore tags VLAN are required.

- 1. Load VLAN Trunk configuration
- 2. Tester 1 is sending broadcast traffic to using VLAN tag=101 and destination MAC = FFFFFFF
- 3. The switch flood the broadcast to all the ports of the same VLAN1
- 4. Tester 2 receives the message without VLAN tag

Note that in generation there were not tags but the switch inserts it before forwarding it to the Trunk.

Effects of Admission Control Mechanisms

Admission control for Ethernet uses bandwidth profiles based on parameters defined by the MEF

- **Committed Information Rate (CIR)** average rate up to which service frames are delivered as per the service performance objectives.
- **Committed Burst Size (CBS)** maximum number of bytes up to which service frames may be sent as per the service performance objectives without considering the CIR.
- Excess Information Rate (EIR) average rate, greater than or equal to the CIR, up to which service frames do not have any performance objectives.
- **Excess Burst Size (EBS)** the number of bytes up to which service frames are sent (without performance objectives), even if they are out of the EIR threshold.

The basic tool to verify the Admission control are provided by the IETF RFC 2544

- Throughput test, is the maximum rate at which the Device Under Test (DUT) drops no frames
- Back-to-back tests, measure the length of the longest maximum-rate frame burst

Verification of the Admission Control

Test 10, Admission Control managed by DSCP

- 1. Load basic traffic configuration
- 2. Set up, we may start testing any DSCP different to 46
- 3. Run the test and at D, connected at the trunk port, we should get the same bit rate
- **4.** Set up, we may start testing any DSCP equals to 46
- 5. Run the test then Rx at the trunk should receive up to 10 Mbit/s which is the max admission control

BERT Test

BERT (BER Test) is an analysis of network transmission efficiency that computes the percentage of bits received in error from the total number sent. The BERT transmits traffic with a test pattern in the payload over an Ethernet network under test, and checks the transmission quality of Ethernet network between the local and the remote devices.

When running a BER test, your system expects to receive the pattern according to the configured condition to ascertain the BER SYNC or Loss of SYNC. If BER is not allowed in point-to-point operation, then create a loop back function on the far end CSA or in the network, send out a predictable stream to ensure that you receive the same data that was transmitted.

Multi-Streams - Uniform Traffic Profile

Multi-Streams in Uniform Traffic profile is used to simulate a large number of user traffic to verify the provisioning and routing of network or devices under test. This allows users to configure up to 8 MAC and/or IP address to simulate 8 users, a range of VLAN is also available to emulate different user traffic carried in different VLAN which is more realistically in the real world.

For example, users configure 8 MAC and IP address on the tester to generate 8 user traffics and 2 VLANs for different cities in the same country. Run the test to verify if the network provisioning and routing configuration is proper and efficient, users can get the BER SYNC if the network and devices under test running accurately.

QoS Test Setup

The trend of network services is toward supporting a variety of Timing or Loss sensitive applications on the Metro Ethernet Network (MEN). And service providers are required to assign different service quality level for those modern network applications.

Traffic Statistics	 Top 16 talkers: Sour/Dest MAC / IPv4 / IPv6 addresses, VID (VLAN), C-VID (Q_in_Q), S-VID (MPLS) Ethernet Frame Counts (RFC 2819): VLAN, Q-in-Q, Priority, Control, Pause, BPDUs Tx/Rx Uni-Multi-Broadcast, Errors, Undersized, Oversized, Fragments, Jabbers, Runts, (Late) Collisions, Sizes, MPLS stack length Bandwidth Statistics: (in bit/s, frame/s, %) Rate, Max, Min, Aver, Occupancy, Unicast, Multicast, Broadcast IPv4 & IPv6 counts: (in bit/s, frame/s, %) Unicast, Multicast, Broadcast, Errors, TCP, UDP, ICMP
Results	 Twisted Cable: MDI/MDI-X status, Open, Cable Length Test, Short, Polarities, Pair Skew. PoE: voltage and current SFP: Presence current interface, Vendor, Part number, Optical power (over compatible SFP) Frame Delay (FTD) Y.1563: Min/Max/Med/Mean; Delay Variation (FDV) RFC1889: Peak; Jitter Curr/Max/Min/Mean Frame Loss (FLR) Y.1563, Duplicated: Out-of-Order packets (RFC 5236) Availability: SES and Y.1563 PEU; BER: Count, seconds with errors, Pattern losses, pattern loss seconds
RFC-2544 & Y.1564	 RFC 2544: Throughput, Latency, Frame Loss, Back-to-back, Recovery eSAM: test up to 8 non-color or 4 color aware services. Configuration: CIR, EIR, max. throughput for each service Tests (CIR, EIR and policing) with FTD, FDV, FLR and availability Performance test with FTD, FDV, FLR and availability results for all services
ICMP	 RFC 792: IP ping / Traceroute, Generation of ICMP echo request: Dest. IP address, Packet length, Generation interval Analysis of ICMP echo reply: Round trip time, Lost packets, Time-To-Live Exceeded, Port unreachable

QoS Measurement

Many things might happen to packets as they travel from source to destination. For example, we know voice quality is affected by two major factors: Packet loss and Packet delay. Packet loss causes voice skips, while Packet delay can cause voice quality degradation. If the delay is variable, there is a risk of jitter buffer overruns at the receiving end. Before we start to run QoS test, the following is a summary for main factors of QoS measurement.

Jitter, Packets from source will reach the destination with different delays. This variation in delay is known as jitter. Jitter can seriously affect the quality of streaming audio and video.

Out of Sequence, When a group of related packets is routed through the Internet, different packets may take different routes. The packets arrive in a different order, and these out-of-order packets need to rearrange to be isochronous. The lack of isochronicity dramatically affects VoIP and video streams quality.

Packet Loss, The main observable reason of Packet Loss is poor data throughput performance. The network might fail to deliver some packets when the packets arrive and their buffers are already full. Some of the packets might be dropped because of QoS ToS policy on the device. Packet loss may also be caused by other factors such as signal degradation and faulty networking hardware.

BERT Error, Sometimes packets are corrupted or misdirected, and BERT Error may occur during transmission.

Network Delay, Packets take time to reach their destination. IP network delay is primarily determined by the buffering, queuing, and switching or routing delay.

Inter-Arriving Time, The Inter-Arriving Time measurement is an integral part of traffic management and monitoring tasks in QoS networks. It shows the time differences between two consecutive timestamps of packet arrival

